Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T04:07:30.823Z Has data issue: false hasContentIssue false

Lower semicontinuity and relaxation results in BV for integral functionalswith BV integrands

Published online by Cambridge University Press:  21 November 2007

Micol Amar
Affiliation:
Dipartimento di Metodi e Modelli Matematici, Università di Roma “La Sapienza”, Via A. Scarpa 16, 00161 Roma, Italy; [email protected]; [email protected]
Virginia De Cicco
Affiliation:
Dipartimento di Metodi e Modelli Matematici, Università di Roma “La Sapienza”, Via A. Scarpa 16, 00161 Roma, Italy; [email protected]; [email protected]
Nicola Fusco
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso di Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy; [email protected]
Get access

Abstract

New L 1-lower semicontinuity and relaxation results for integral functionals defined in BV(Ω) are proved,under a very weak dependence of the integrand with respect to the spatial variable x. Moreprecisely, only the lower semicontinuity in the sense of the 1-capacity is assumed inorder to obtain the lower semicontinuity of the functional.This condition is satisfied, for instance, by the lower approximate limit of the integrand, ifit is BV with respect to x. Under this further BV dependence,a representation formula for the relaxed functional is also obtained.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amar, M., and Bellettini, G., A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11 (1994) 91133. CrossRef
M. Amar and V. De Cicco, Relaxation in BV for a class of functionals without continuity assumptions. NoDEA Nonlinear Differential Equations Appl. (to appear).
Amar, M., De Cicco, V. and Fusco, N., A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: COCV 13 (2007) 396412. CrossRef
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000).
Anzellotti, G., Buttazzo, G. and Dal Maso, G., Dirichlet problem for demi-coercive functionals. Nonlinear Anal. 10 (1986) 603613. CrossRef
Bouchitté, G. and Valadier, M., Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398420. CrossRef
Bouchitté, G., Fonseca, I. and Mascarenhas, L., A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 5198.
G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow (1989).
Carriero, M., Dal Maso, G., Leaci, A. and Pascali, E., Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359396.
Dal Maso, G., Integral representation on $BV(\Omega)$ of Γ-limits of variational integrals. Manuscripta Math. 30 (1980) 387416. CrossRef
Dal Maso, G., On the integral representation of certain local functionals. Ricerche di Matematica 32 (1983) 85113.
G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993).
V. De Cicco and G. Leoni, A chain rule in $L^1({\rm div};\Omega)$ and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 19 (2004) 23–51. CrossRef
De Cicco, V., Fusco, N. and Verde, A., On L 1-lower semicontinuity in $BV(\Omega)$ . J. Convex Analysis 12 (2005) 173185.
De Cicco, V., Fusco, N. and Verde, A., A chain rule formula in $BV(\Omega)$ and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 28 (2007) 427447. CrossRef
De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842850.
De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63101.
Federer, H. and Ziemer, W.P., The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Un. Math. J. 22 (1972) 139158. CrossRef
I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Royal Soc. Edinb., Sect. A, Math. 131 (2001) 519–565.
Fonseca, I. and Müller, S., Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23 (1992) 10811098. CrossRef
Fonseca, I. and Müller, S., Relaxation of quasiconvex functionals in BV $(\Omega,\mathbb{R}^p)$ for integrands $f(x,u,\nabla u)$ . Arch. Rat. Mech. Anal. 123 (1993) 149. CrossRef
Fusco, N., Giannetti, F. and Verde, A., A remark on the L 1-lower semicontinuity for integral functionals in BV. Manuscripta Math. 112 (2003) 313323. CrossRef
Fusco, N., Gori, M. and Maggi, F., A remark on Serrin's Theorem. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 425433. CrossRef
Gori, M. and Maggi, F., The common root of the geometric conditions in Serrin's semicontinuity theorem. Ann. Mat. Pura Appl. 184 (2005) 95114. CrossRef
Gori, M., Maggi, F. and Marcellini, P., On some sharp conditions for lower semicontinuity in L 1. Diff. Int. Eq. 16 (2003) 5176.
Maggi, F., On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) 477489.
Miranda, M., Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa 18 (1964) 515542.
Reshetnyak, Y.G., Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 10391045. CrossRef