Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T18:34:05.771Z Has data issue: false hasContentIssue false

Hamiltonian identification for quantum systems: well-posedness and numerical approaches

Published online by Cambridge University Press:  12 May 2007

Claude Le Bris
Affiliation:
INRIA Rocquencourt, Rocquencourt B.P. 105, 78153 Le Chesnay Cedex, France. CERMICS-ENPC, 6 & 8 Av. B. Pascal, 77455 Marne la Vallée Cedex, France; [email protected]
Mazyar Mirrahimi
Affiliation:
INRIA Rocquencourt, Rocquencourt B.P. 105, 78153 Le Chesnay Cedex, France. École des Mines de Paris, CAS, 60 Bd Saint-Michel, 75272 Paris Cedex 06, France; [email protected]
Herschel Rabitz
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009; [email protected]
Gabriel Turinici
Affiliation:
INRIA Rocquencourt, Rocquencourt B.P. 105, 78153 Le Chesnay Cedex, France. CEREMADE, Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France; [email protected]
Get access

Abstract

This paper considers the inversion problem related to themanipulation of quantumsystems using laser-matter interactions. The focusis on the identification of the field free Hamiltonian and/orthe dipole moment of aquantum system. The evolution of the system is given by the Schrödingerequation. The available data are observations as a function of timecorresponding to dynamics generated by electric fields. Thewell-posedness of the problem is proved, mainly focusing on the uniqueness ofthe solution. A numerical approach is also introduced with anillustration of its efficiency on a test problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertini, F. and D'Alessandro, D., Notions of controllability for multilevel bilinear quantum mechanical systems. IEEE Trans. Automatic Control 48 (2003) 13991403. CrossRef
Alis, O.F., Rabitz, H., Phan, M.Q., Rosenthal, C. and Pence, M., On the inversion of quantum mechanical systems: Determining the amount and type of data for a unique solution. J. Math. Chem. 35 (2004) 6578. CrossRef
Claudio, Altafini, Controllability of quantum mechanical systems by root space decomposition of ${su}(N)$ . J. Math. Phys. 43 (2002) 20512062.
Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, V., Strehle, M. and Gerber, G., Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282 (1998) 919922. CrossRef
Bardeen, C., Yakovlev, V.V., Wilson, K.R., Carpenter, S.D., Weber, P.M. and Warren, W.S., Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280 (1997) 151. CrossRef
Bardeen, C.J., Yakovlev, V.V., Squier, J.A. and Wilson, K.R., Quantum control of population transfer in green fluorescent protein by using chirped femtosecond pulses. J. Am. Chem. Soc. 120 (1998) 1302313027. CrossRef
Barton, R.R. and Ivey, J.S. Jr., Nelder-Mead simplex modifications for simulation optimization. Manage. Sci. 42 (1996) 954973. CrossRef
Chen, Y., Gross, P., Ramakrishna, V., Rabitz, H. and Mease, K., Competitive tracking of molecular objectives described by quantum mechanics. J. Chem. Phys. 102 (1995) 80018010. CrossRef
C. Cohen-Tannoudji, B. Diu and F. Laloë, Mécanique Quantique, Volumes I & II. Hermann, Paris (1977).
Geremia, J.M. and Rabitz, H., Optimal hamiltonian identification: The synthesis of quantum optimal control and quantum inversion. J. Chem. Phys 118 (2003) 53695382. CrossRef
Judson, R.S. and Rabitz, H., Teaching lasers to control molecules. Phys. Rev. Lett. 68 (1992) 1500. CrossRef
R.L. Kosut and H. Rabitz, Identification of quantum systems. In Proceedings of the 15th IFAC World Congress (2002).
S. Kullback, Information Theory and Statistics. Wiley, New York (1959).
Kullback, S. and Leibler, R.A., On information and sufficiency. Ann. Math. Stat. 22 (1951) 7986. CrossRef
C. Le Bris, Y. Maday and G. Turinici, Towards efficient numerical approaches for quantum control. In Quantum Control: mathematical and numerical challenges, A. Bandrauk, M.C. Delfour and C. Le Bris Eds., CRM Proc. Lect. Notes Ser., AMS Publications, Providence, R.I. (2003) 127–142.
Levis, R.J., Menkir, G. and Rabitz, H., Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292 (2001) 709. CrossRef
Li, B., Turinici, G., Ramakrishna, V. and Rabitz, H., Optimal dynamic discrimination of similar molecules through quantum learning control. J. Phys. Chem. B. 106 (2002) 81258131. CrossRef
Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys 118 (18) (2003).
Mirrahimi, M., Rouchon, P. and Turinici, G., Lyapunov control of bilinear Schrödinger equations. Automatica 41 (2005) 19871994. CrossRef
Mirrahimi, M., Turinici, G. and Rouchon, P., Reference trajectory tracking for locally designed coherent quantum controls. J. Phys. Chem. A 109 (2005) 26312637. CrossRef
Phan, M.Q. and Rabitz, H., Learning control of quantum-mechanical systems by laboratory identification of effective input-output maps. Chem. Phys. 217 (1997) 389400. CrossRef
Rabitz, H., Perspective. Shaped laser pulses as reagents. Science 299 (2003) 525527. CrossRef
Ramakrishna, V., Salapaka, M., Dahleh, M. and Rabitz, H., Controllability of molecular systems. Phys. Rev. A 51 (1995) 960966. CrossRef
S. Rice and M. Zhao, Optimal Control of Quatum Dynamics. Wiley (2000) (many additional references to the subjects of this paper may also be found here).
Shenvi, N., Geremia, J.M. and Rabitz, H., Nonlinear kinetic parameter identification through map inversion. J. Phys. Chem. A 106 (2002) 1231512323. CrossRef
Tadi, M. and Rabitz, H., Explicit method for parameter identification. J. Guid. Control Dyn. 20 (1997) 486491. CrossRef
Turinici, G. and Rabitz, H., Quantum wavefunction controllability. Chem. Phys. 267 (2001) 19. CrossRef
Turinici, G. and Rabitz, H., Wavefunction controllability in quantum systems. J. Phys. A 36 (2003) 25652576. CrossRef
Weinacht, T, Ahn, J. and Bucksbaum, P., Controlling the shape of a quantum wavefunction. Nature 397 (1999) 233. CrossRef
Zhu, W. and Rabitz, H., A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 109 (1998) 385391. CrossRef
Zhu, W. and Rabitz, H., Potential surfaces from the inversion of time dependent probability density data. J. Chem. Phys. 111 (1999) 472480. CrossRef