Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T21:03:22.889Z Has data issue: false hasContentIssue false

Γ-convergence of functionals on divergence-free fields

Published online by Cambridge University Press:  05 September 2007

Nadia Ansini
Affiliation:
Section de Mathématiques, EPFL, 1015 Lausanne, Switzerland; [email protected]
Adriana Garroni
Affiliation:
Dip. di Matematica, Univ. di Roma `La Sapienza', P.le A. Moro 2, 00185 Rome, Italy; [email protected]
Get access

Abstract

We study the stability of a sequence of integralfunctionals on divergence-free matrix valued fields following the directmethods of Γ-convergence. We prove that the Γ-limitis an integral functional on divergence-free matrix valued fields.Moreover, we show that the Γ-limit is also stable undervolume constraint and various type of boundary conditions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, E. and Fusco, N., Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125145. CrossRef
R.A. Adams, Sobolev spaces. Academic Press, New York (1975).
A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002).
A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998).
Braides, A., Fonseca, I. and Leoni, G., A-Quasiconvexity: Relaxation and Homogenization. ESAIM: COCV 5 (2000) 539577. CrossRef
G. Dal Maso, An Introduction to Γ -convergence. Birkhäuser, Boston (1993).
Fonseca, I. and Müller, S., A-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 13551390. CrossRef
Fonseca, I., Müller, S. and Pedregal, P., Analysis of concentration and oscillation effects generated by gradient. SIAM J. Math. Anal. 29 (1998) 736756. CrossRef
Murat, F., Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 68102.
P. Pedregal, Parametrized measures and variational principles. Birkhäuser, Baston (1997).
Suquet, P., Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids 41 (1993) 9811002. CrossRef
Talbot, D.R.S. and Willis, J.R., Upper and lower bounds for the overall properties of a nonlinear composite dielectric. I. Random microgeometry. Proc. Roy. Soc. London A 447 (1994) 365384. CrossRef
Talbot, D.R.S. and Willis, J.R., Upper and lower bounds for the overall properties of a nonlinear composite dielectric. II. Periodic microgeometry. Proc. Roy. Soc. London A 447 (1994) 385396. CrossRef
Tartar, L., Compensated compactness and applications to partial differential equations. Nonlinerar Analysis and Mechanics: Heriot-Watt Symposium, R. Knops Ed., Longman, Harlow. Pitman Res. Notes Math. Ser. 39 (1979) 136212.
R. Temam, Navier-Stokes Equations. Elsevier Science Publishers, Amsterdam (1977).