Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T10:06:30.830Z Has data issue: false hasContentIssue false

Continuous reformulations and heuristics for the Euclidean travelling salesperson problem

Published online by Cambridge University Press:  20 August 2008

Tuomo Valkonen
Affiliation:
Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland. [email protected]; [email protected]
Tommi Kärkkäinen
Affiliation:
Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland. [email protected]; [email protected]
Get access

Abstract

We consider continuous reformulations of the Euclidean travelling salesperson problem (TSP), based on certain clustering problemformulations. These reformulations allow us to apply a generalisation with perturbations of the Weiszfeld algorithm in an attempt tofind local approximate solutions to the Euclidean TSP.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. Applegate, R. Bixby, V. Chavátal and W. Cook, On the solution of traveling salesman problems, in Doc. Math., Extra volume ICM 1998 III, Berlin (1998) 645–656.
Arora, S., Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45 (1998) 753782. CrossRef
Arora, S., Approximation schemes for NP-hard geometric optimization problems: a survey. Math. Program. 97 (2003) 4369. CrossRef
S. Arora, P. Raghavan and S. Rao, Approximation schemes for Euclidean k-medians and related problems, in ACM Symposium on Theory of Computing (1998) 106–113.
Attouch, H. and Wets, R.J.-B., Quantitative stability of variational systems: I. The epigraphical distance. Trans. Amer. Math. Soc. 328 (1991) 695729.
Attouch, H. and Wets, R.J.-B., Quantitative stability of variational systems: II. A framework for nonlinear conditioning. SIAM J. Optim. 3 (1993) 359381. CrossRef
S. Äyrämö, Knowledge Mining Using Robust Clustering. Jyväskylä Studies in Computing 63. University of Jyväskylä, Ph.D. thesis (2006).
Bentley, J.J., Fast algorithms for geometric traveling salesman problems. ORSA J. Comput. 4 (1992) 887411. CrossRef
G. Buttazzo and E. Stepanov, Minimization problems for average distance functionals, in Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara Ed., Quaderni di Matematica, Seconda Università di Napoli, Caserta 14 (2004) 47–83.
Helsgaun, K., An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126 (2000) 106130. CrossRef
J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I-II. Springer (1993).
R. Horst and P.M. Pardolos Eds., Handbook of Global Optimization. Kluwer Academic Publishers (1995).
D.S. Johnson and L.A. McGeoch, The traveling salesman problem: A case study in local optimization, in Local Search in Combinatorial Optimization, E. Aarts and J. Lenstra Eds., John Wiley and Sons (1997) 215–310.
D.S. Johnson and L.A. McGeoch, Experimental analysis of heuristics for the STSP, in The Traveling Salesman Problem and Its Variations, G. Gutin and A.P. Punnen Eds., Springer (2002) 369–443.
Litke, J.D., An improved solution to the traveling salesman problem with thousands of nodes. Commun. ACM 27 (1984) 12271236. CrossRef
D.S. Mitrinović, Analytic Inequalities. Springer-Verlag (1970).
S. Peyton Jones, Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press (2003).
Polak, P. and Wolansky, G., The lazy travelling salesman problem in $\mathbb{R}^2$ . ESAIM: COCV 13 (2007) 538552. CrossRef
Reinelt, G., TSPLIB – A traveling salesman problem library. ORSA J. Comput. 3 (1991) 376384. CrossRef
R.T. Rockafellar, Convex Analysis. Princeton University Press (1972).
R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998).
Valkonen, T., Convergence of a SOR-Weiszfeld type algorithm for incomplete data sets. Numer. Funct. Anal. Optim. 27 (2006) 931952. CrossRef
T. Valkonen and T. Kärkkäinen, Clustering and the perturbed spatial median. Computer and Mathematical Modelling (submitted).