Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T11:22:31.894Z Has data issue: false hasContentIssue false

Simultaneous controllability in sharp time for two elastic strings

Published online by Cambridge University Press:  15 August 2002

Sergei Avdonin
Affiliation:
Department of Applied Mathematics and Control, St. Petersburg State University, St. Petersburg 198904, Russia. Department of Mathematics and Statistics, The Flinders University of South Australia, P.O. Box 2100, Adelaide 5001, Australia; [email protected].
Marius Tucsnak
Affiliation:
Department of Mathematics, University of Nancy-I, BP. 239, 54506 Vandœuvre-lès-Nancy, France; [email protected].
Get access

Abstract

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.A. Avdonin, Simultaneous controllability of several elastic strings, in Proc. CD of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems. Perpignan, France, June 19-23 (2000).
S.A. Avdonin and S.A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York (1995).
Baiocchi, C., Komornik, V. and Loreti, P., Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital. B 2 (1999) 33-63.
Baiocchi, C., Komornik, V. and Loreti, P., Généralisation d'un théorème de Beurling et application à la théorie du contrôle. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 281-286. CrossRef
J.W.S. Cassels, An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1965).
Dolecki, S. and Russell, D.L., A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185-220. CrossRef
Jaffard, S., Tucsnak, M. and Zuazua, E., Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. CrossRef
Jaffard, S., Tucsnak, M. and Zuazua, E., On a theorem of Ingham. J. Fourier Anal. Appl. 3 (1997) 577-582. CrossRef
L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley & Sons, New York (1974).
J.E. Lagnese and J.L. Lions, Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988).
S. Lang, Introduction to Diophantine Approximations. Addison Wesley, New York (1966).
J.-L. Lions, Controlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués, Volume 1. Masson, Paris (1988).
N.K. Nikol'skii, A Treatise on the Shift Operator. Moscow, Nauka, 1980 (Russian); Engl. Transl., Springer, Berlin (1986).
B.S. Pavlov, Basicity of an exponential systems and Muckenhoupt's condition. Dokl. Akad. Nauk SSSR 247 (1979) 37-40 (Russian); English transl. in Soviet Math. Dokl. 20 (1979) 655-659.
W. Rudin, Real and complex analysis. McGraw-Hill, New York (1987).
D.L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986) 199-229.
Tucsnak, M. and Weiss, G., Simultaneous exact controllability and some applications. SIAM J. Control Optim. 38 (2000) 1408-1427. CrossRef
R. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980).