Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T23:16:41.088Z Has data issue: false hasContentIssue false

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Published online by Cambridge University Press:  19 July 2008

Stefano Lisini*
Affiliation:
Dipartimento di Scienze e Tecnologie Avanzate, Università degli Studi del Piemonte Orientale, Italy. [email protected]
Get access

Abstract

We study existence and approximation of non-negative solutions of partial differential equations of the type 
 $$\partial_t u - \div (A(\nabla (f(u))+u\nabla V )) = 0 \qquad \mbox{in } (0,+\infty )\times \mathbb{R}^n,\qquad\qquad (0.1)$$ where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, $f:[0,+\infty) \rightarrow[0,+\infty)$ is a suitable non decreasing function, $V:\mathbb{R}^n \rightarrow\mathbb{R}$ is a convex function.Introducing the energy functional $\phi(u)=\int_{\mathbb{R}^n} F(u(x))\,{\rm d}x+\int_{\mathbb{R}^n}V(x)u(x)\,{\rm d}x$ ,where F is a convex function linked to f by $f(u) = uF'(u)-F(u)$ ,we show that u is the “gradient flow” of ϕ with respect to the2-Wasserstein distance between probability measures onthe space $\mathbb{R}^n$ , endowed with the Riemannian distance induced by $A^{-1}.$ In the case of uniform convexity of V, long time asymptotic behaviour and decay rate to the stationary statefor solutions of equation (0.1) are studied.A contraction property in Wasserstein distance for solutions of equation (0.1)is also studied in a particular case.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agueh, M., Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Differential Equations 10 (2005) 309360.
Ambrosio, L., Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191246.
L. Ambrosio, Transport equation and cauchy problem for non-smooth vector fields. Lecture Notes of the CIME Summer school (2005) available on line at http://cvgmt.sns.it/people/ambrosio/.
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000).
L. Ambrosio, N. Gigli and G. Savarè, Gradient flows in metric spaces and in the Wasserstein spaces of probability measures. Birkhäuser (2005).
Arnold, A., Markowich, P., Toscani, G. and Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Diff. Eq. 26 (2001) 43100. CrossRef
Benamou, J.D. and Brenier, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375393. CrossRef
Carlen, E.A. and Gangbo, W., Constrained steepest descent in the 2-Wasserstein metric. Ann. Math. 157 (2003) 807846. CrossRef
Carlen, E.A. and Gangbo, W., Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Arch. Rational Mech. Anal. 172 (2004) 2164. CrossRef
Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G. and Unterreiter, A., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133 (2001) 182. CrossRef
Carrillo, J.A., McCann, R.J. and Villani, C., Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19 (2003) 9711018. CrossRef
Carrillo, J.A., McCann, R.J. and Villani, C., Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal. 179 (2006) 217263. CrossRef
J. Crank, The mathematics of diffusion. Clarendon Press, Oxford, second edition (1975).
De Cecco, G. and Palmieri, G., Intrinsic distance on a Lipschitz Riemannian manifold. Rend. Sem. Mat. Univ. Politec. Torino 46 (1990) 157170.
De Cecco, G. and Palmieri, G., Intrinsic distance on a LIP Finslerian manifold. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 17 (1993) 129151.
De Cecco, G. and Palmieri, G., LIP manifolds: from metric to Finslerian structure. Math. Z. 218 (1995) 223237. CrossRef
E. De Giorgi, New problems on minimizing movements, in Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math. 29, Masson, Paris (1993) 81–98.
De Giorgi, E., Marino, A. and Tosques, M., Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180187.
Degiovanni, M., Marino, A. and Tosques, M., Evolution equations with lack of convexity. Nonlinear Anal. 9 (1985) 14011443. CrossRef
C. Dellacherie and P.A. Meyer, Probabilities and potential. North-Holland Publishing Co., Amsterdam (1978).
L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992).
Jordan, R., Kinderlehrer, D. and Otto, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 117 (electronic). CrossRef
Kinderlehrer, D. and Tudorascu, A., Transport via mass transportation. Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 311338.
Lisini, S., Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differential Equations 28 (2007) 85120. CrossRef
McCann, R.J., A convexity principle for interacting gases. Adv. Math. 128 (1997) 153179. CrossRef
F. Otto, Doubly degenerate diffusion equations as steepest descent. Manuscript (1996) available on line at http://www-mathphys.iam.uni-bonn.de/web/forschung/publikationen/main-en.htm.
Otto, F., Evolution of microstructure in unstable porous media flow: a relaxational approach. Comm. Pure Appl. Math. 52 (1999) 873915. 3.0.CO;2-T>CrossRef
Otto, F., The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Diff. Eq. 26 (2001) 101174. CrossRef
Petrelli, L. and Tudorascu, A., Variational principle for general diffusion problems. Appl. Math. Optim. 50 (2004) 229257. CrossRef
Sturm, K.-T., Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84 (2005) 149168. CrossRef
J.L. Vázquez, The porous medium equation, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford (2007).
C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence, RI (2003).
von Renesse, M.-K. and Sturm, K.-T., Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm. Pure Appl. Math. 58 (2005) 923940. CrossRef