Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T03:28:36.105Z Has data issue: false hasContentIssue false

Existence of classical solutions and feedback stabilization for the flow in gas networks

Published online by Cambridge University Press:  11 August 2009

Martin Gugat
Affiliation:
Lehrstuhl 2 für Angewandte Mathematik, Martensstr. 3, 91058 Erlangen, Germany. [email protected]
Michaël Herty
Affiliation:
RWTH Aachen, Lehrstuhl C für Mathematik, Templergraben 55, 52065 Aachen, Germany. [email protected]
Get access

Abstract

We consider the flow of gas through pipelines controlled by a compressorstation. Under a subsonic flow assumption we prove the existenceof classical solutions for a given finite time interval.The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressorstation. We introduce a Lyapunov function and prove exponential decay with respect to the L2-norm.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banda, M.K., Herty, M. and Klar, A., Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogenous Media 1 (2006) 295314. CrossRef
Banda, M.K., Herty, M. and Klar, A., Gas flow in pipeline networks. Networks and Heterogenous Media 1 (2006) 4156. CrossRef
Bardos, C., Lebeau, G. and Rauch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (2002) 10241065. CrossRef
G. Bastin, J.-M. Coron and B. d'Andrea-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogenous Media 4 (2009).
Chen, N.H., An explicit equation for friction factor in pipe. Ind. Eng. Chem. Fund. 18 (1979) 296297. CrossRef
Colombo, R.M., Guerra, G., Herty, M. and Schleper, V., Optimal control in networks of pipes and canals. SIAM J. Control Optim. 48 (2009) 20322050. CrossRef
J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136. AMS, Providence (2007).
J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A Lyapunov approach to control irrigation canals modeled by the Saint-Venant equations, in Proc. Eur. Control Conf., Karlsruhe, Germany (1999).
J.-M. Coron, B. d'Andréa-Novel and G. Bastin, On boundary control design for quasi-linear hyperbolic systems with entropies as Lyapunov functions, in Proc. 41st IEEE Conf. Decision Control, Las Vegas, USA (2002).
J.-M. Coron, B. d'Andréa-Novel, G. Bastin and L. Moens, Boundary control for exact cancellation of boundary disturbances in hyperbolic systems of conservation laws, in Proc. 44st IEEE Conf. Decision Control, Seville, Spain (2005).
Coron, J.-M., d'Andréa-Novel, B. and Bastin, G., A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Contr. 52 (2007) 211. CrossRef
Coron, J.-M., Bastin, G. and d'Andréa-Novel, B., Dissipative boundary conditions for one dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 14601498. CrossRef
de Halleux, J., Prieur, C., Coron, J.-M., d'Andréa-Novel, B. and Bastin, G., Boundary feedback control in networks of open channels. Automatica 39 (2003) 13651376. CrossRef
K. Ehrhardt and M. Steinbach, Nonlinear gas optimization in gas networks, in Modeling, Simulation and Optimization of Complex Processes, H.G. Bock, E. Kostina, H.X. Pu and R. Rannacher Eds., Springer Verlag, Berlin, Germany (2005).
Gugat, M. and Leugering, G., Global boundary controllability of the de St. Venant equations between steady states. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 111. CrossRef
Gugat, M. and Leugering, G., Global boundary controllability of the Saint-Venant system for sloped canals with friction. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 257270. CrossRef
Gugat, M., Leugering, G. and Schmidt, E.J.P.G., Global controllability between steady supercritical flows in channel networks. Math. Meth. Appl. Sci. 27 (2004) 781802. CrossRef
Herty, M., Coupling conditions for networked systems of Euler equations. SIAM J. Sci. Comp. 30 (2007) 15961612. CrossRef
Herty, M. and Sachers, V., Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media 2 (2007) 733750.
Leugering, G. and Schmidt, E.J.P.G., On the modeling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41 (2002) 164180. CrossRef
Exact, T.-T. Li controllability for quasilinear hyperbolic systems and its application to unsteady flows in a network of open canals. Math. Meth. Appl. Sci. 27 (2004) 10891114.
Exact, T.-T. Li boundary controllability of unsteady flows in a network of open canals. Math. Nachr. 278 (2005) 310329.
Li, T.-T. and Jin, Y., Semi-global C2 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. B 22 (2001) 325336. CrossRef
Li, T.-T. and Rao, B., [Exact boundary controllability of unsteady flows in a tree-like network of open canals]. C. R. Acad. Sci. Paris Ser. I 339 (2004) 867872. CrossRef
Li, T.-T. and Wang, Z., Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form. Int. J. Dynamical Systems Differential Equations 1 (2007) 1219. CrossRef
T.-T. Li and W.-C. Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics Series V. Durham, NC, USA (1985).
Martin, A., Möller, M. and Moritz, S., Mixed integer models for the stationary case of gas network optimization. Math. Programming 105 (2006) 563582. CrossRef
E. Menon, Gas Pipeline Hydraulics. Taylor and Francis, Boca Raton (2005).
Osiadacz, A., Simulation of transient flow in gas networks. Int. J. Numer. Meth. Fluids 4 (1984) 1323. CrossRef
A.J. Osciadacz, Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987).
A.J. Osciadacz, Different Transient Models – Limitations, advantages and disadvantages, in 28th Annual Meeting of PSIG (Pipeline Simulation Interest Group), San Francisco, California, USA (1996).
Pipeline Simulation Interest Group, www.psig.org.
M. Steinbach, On PDE Solution in Transient Optimization of Gas Networks. Technical Report ZR-04-46, ZIB Berlin, Germany (2004).
Z. Vostrý, Transient Optimization of gas transport and distribution, in Proceedings of the 2nd International Workshop SIMONE on Innovative Approaches to Modelling and Optimal Control of Large Scale Pipelines, Prague, Czech Republic (1993) 53–62.
Wang, Z., Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. B 27 (2006) 643656. CrossRef
F.M. White, Fluid Mechanics. McGraw–Hill, New York, USA (2002).