Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T01:35:30.492Z Has data issue: false hasContentIssue false

Analysis of a time optimal control problem relatedto the management of a bioreactor***

Published online by Cambridge University Press:  23 April 2010

Lino J. Alvarez-Vázquez
Affiliation:
Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación, Universidad de Vigo, 36310 Vigo, Spain. [email protected]; [email protected]
Francisco J. Fernández
Affiliation:
Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15706 Santiago, Spain. [email protected]
Aurea Martínez
Affiliation:
Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación, Universidad de Vigo, 36310 Vigo, Spain. [email protected]; [email protected]
Get access

Abstract

We consider a time optimal control problem arisen from the optimalmanagement of a bioreactor devoted to the treatment ofeutrophicated water. We formulate this realistic problem as astate-control constrained time optimal control problem. Afteranalyzing the state system (a complex system of coupled partialdifferential equations with non-smooth coefficients foradvection-diffusion-reaction with Michaelis-Menten kinetics,modelling the eutrophication processes) we demonstrate theexistence of, at least, an optimal solution. Then we present adetailed derivation of a first order optimality condition(involving the corresponding adjoint systems) characterizing theseoptimal solutions. Finally, a numerical example is shown.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegretto, W., Mocenni, C. and Vicino, A., Periodic solutions in modelling lagoon ecological interactions. J. Math. Biol. 51 (2005) 367388. CrossRef
Alvarez-Vázquez, L.J., Fernández, F.J. and Muñoz-Sola, R., Analysis of a multistate control problem related to food technology. J. Differ. Equ. 245 (2008) 130153. CrossRef
Alvarez-Vázquez, L.J., Fernández, F.J. and Muñoz-Sola, R., Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl. 349 (2009) 135155. CrossRef
Arada, N. and Raymond, J.-P., Time optimal problems with Dirichlet boundary controls. Discrete Contin. Dyn. Syst. 9 (2003) 15491570.
Arino, O., Boushaba, K. and Boussouar, A., A mathematical model of the dynamics of the phytoplankton-nutrient system. Nonlinear Anal. Real World Appl. 1 (2000) 6987. CrossRef
R.P. Canale, Modeling biochemical processes in aquatic ecosystems. Ann Arbor Science Publishers, Ann Arbor (1976).
Cannarsa, P. and Frankowska, H., Interior sphere property of attainable sets and time optimal control problems. ESAIM: COCV 12 (2006) 350370. CrossRef
Casas, E., Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 9931006. CrossRef
Cioffi, F. and Gallerano, F., Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model. Appl. Math. Model. 25 (2001) 385426. CrossRef
Drago, M., Cescon, B. and Iovenitti, L., A three-dimensional numerical model for eutrophication and pollutant transport. Ecol. Model. 145 (2001) 1734. CrossRef
Gugat, M. and Leugering, G., L -norm minimal control of the wave equation: on the weakness of the bang-bang principle. ESAIM: COCV 14 (2008) 254283. CrossRef
Li, S. and Wang, G., The time optimal control of the Boussinesq equations. Numer. Funct. Anal. Optim. 24 (2003) 163180. CrossRef
Lunardini, F. and Oxygen, G. Di Cola dynamics in coastal and lagoon ecosystems. Math. Comput. Model. 31 (2000) 135141. CrossRef
Park, K., Jung, H.-S., Kim, H.-S. and Ahn, S.-M., Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. Mar. Environ. Res. 60 (2005) 171193. CrossRef
Raymond, J.P. and Zidani, H., Pontryagin's principle for time-optimal problems. J. Optim. Theory Appl. 101 (1999) 375402. CrossRef
Raymond, J.P. and Zidani, H., Time optimal problems with boundary controls. Differ. Integr. Equat. 13 (2000) 10391072.
T. Roubíček, Nonlinear partial differential equations with applications. Birkhäuser-Verlag, Basel (2005).
Wang, G., The existence of time optimal control of semilinear parabolic equations. Syst. Control Lett. 53 (2004) 171175. CrossRef
Wang, L. and Wang, G., The optimal time control of a phase-field system. SIAM J. Control Optim. 42 (2003) 14831508. CrossRef
Yamashiki, Y., Matsumoto, M., Tezuka, T., Matsui, S. and Kumagai, M., Three-dimensional eutrophication model for Lake Biwa and its application to the framework design of transferable discharge permits. Hydrol. Proc. 17 (2003) 29572973. CrossRef
E. Zeidler, Nonlinear Functional Analysis and Its Applications – Part 3: Variational Methods and Optimization. Springer-Verlag, Berlin (1985).