Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T01:58:03.400Z Has data issue: false hasContentIssue false

Zero-temperature limit of one-dimensional Gibbs states via renormalization: the case of locally constant potentials

Published online by Cambridge University Press:  04 June 2010

J.-R. CHAZOTTES
Affiliation:
Centre de Physique Théorique, École Polytechnique, 91128 Palaiseau Cedex, France (email: [email protected])
J.-M. GAMBAUDO
Affiliation:
Laboratoire J. A. Dieudonné, UMR CNRS 6621, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
E. UGALDE
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí SLP 78290, México

Abstract

Let A be a finite set and let ϕ:A→ℝ be a locally constant potential. For each β>0 (‘inverse temperature’), there is a unique Gibbs measure μβϕ. We prove that as β→+, the family (μβϕ)β>0 converges (in the weak-* topology) to a measure that we characterize. This measure is concentrated on a certain subshift of finite type, which is a finite union of transitive subshifts of finite type. The two main tools are an approximation by periodic orbits and the Perron–Frobenius theorem for matrices à la Birkhoff. The crucial idea we bring is a ‘renormalization’ procedure which explains convergence and provides a recursive algorithm for computing the weights of the ergodic decomposition of the limit.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Birkhoff, G.. Projective contraction of a cone equipped with its associated Hilbert metric. Trans. Amer. Math. Soc. 85 (1957), 219227.Google Scholar
[2]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd edn.(Lecture Notes in Mathematics, 470). Springer, Berlin, 2008.CrossRefGoogle Scholar
[3]Brémont, J.. Gibbs measures at temperature zero. Nonlinearity 16 (2003), 419426.CrossRefGoogle Scholar
[4]Chazottes, J.-R. and Hochman, M.. On the zero-temperature limit of Gibbs states. Comm. Math. Phys. (2010), to appear, http://www.springerlink.com/index/1083734146562t7g.pdf.Google Scholar
[5]Chazottes, J.-R., Ramírez, L. A. and Ugalde, E.. Finite type approximations to Gibbs measures on sofic subshifts. Nonlinearity 18(1) (2005), 445465.Google Scholar
[6]Conze, J.-P. and Guivarc’h, Y.. Croissance des sommes ergodiques et principe variationnel. Unpublished manuscript, 1995.Google Scholar
[7]van Enter, A. C. D. and Ruszel, W. M.. Chaotic temperature dependence at zero temperature. J. Stat. Phys. 127 (2007), 567573.CrossRefGoogle Scholar
[8]Georgii, H.-O.. Gibbs Measures and Phase Transitions (de Gruyter Studies in Mathematics, 9). Walter de Gruyter & Co., Berlin, 1988.CrossRefGoogle Scholar
[9]Jenkinson, O.. Geometric barycentres of invariant measures for circle maps. Ergod. Th. & Dynam. Sys. 21(2) (2001), 511532.CrossRefGoogle Scholar
[10]Leplaideur, R.. A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18 (2005), 28472880.CrossRefGoogle Scholar
[11]Nekhoroshev, N. N.. Asymptotics of Gibbs measures in one-dimensional lattice models. Moscow Univ. Math. Bull. 59(1) (2004), 1015.Google Scholar
[12]Ruelle, D.. Thermodynamic Formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn.(Cambridge Mathematical Library). Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
[13]Seneta, E.. Non-negative Matrices and Markov Chains (Springer Series in Statistics). Springer, Berlin, 1981.CrossRefGoogle Scholar
[14]van Enter, A. C. D., Fernández, R. and Sokal, A.. Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72(5–6) (1993), 8791165.CrossRefGoogle Scholar