Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T22:24:08.970Z Has data issue: false hasContentIssue false

Weak disjointness and the equicontinuous structure relation

Published online by Cambridge University Press:  19 September 2008

Joe Auslander
Affiliation:
Department of Mathematics, University of Maryland, College Park, MD 20742, USA
Doug McMahon
Affiliation:
Department of Mathematics, Arizona State University, Tempe, AZ 85281, USA
Jaap van der Woude
Affiliation:
Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA
Ta Sun Wu
Affiliation:
Subfaculteit Wiskunde, Vrije Universiteit, Amsterdam, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss weak disjointness of homomorphisms of minimal transformation groups and use the techniques involved to deepen our knowledge of the equicontinuous structure relation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

[1]Auslander, J. & van der Woude, J. C. S. P.. Maximally highly proximal generators of minimal flows. Ergod. Th. & Dynam. Sys. 1 (1981), 389412.Google Scholar
[2]Bronstein, I. U.. Stable and equicontinuous extensions of minimal sets. Math. Issled. 8 (1973), 311. (Russian).Google Scholar
[3]Bronstein, I. U.. Extensions of Minimal Transformation Groups. Sijthoff & Noordhoff: Alphen aan den Rijn, 1979. (Russian edition: 1975).CrossRefGoogle Scholar
[4]Ellis, R.. Group-like extensions of minimal sets. Trans. Amer. Math. Soc 127 (1967), 125135.Google Scholar
[5]Ellis, R.. Lectures on Topological Dynamics. Benjamin: New York, 1969.Google Scholar
[6]Ellis, R.. The Veech structure theorem. Trans. Amer. Math. Soc. 186 (1973), 203218.CrossRefGoogle Scholar
[7]Ellis, R., Glasner, S. & Shapiro, L.. Proximal isometric flows. Adv. in Math. 17 (1975), 213260.CrossRefGoogle Scholar
[8]Furstenberg, H.. The structure of distal flows. Amer. J. Math. 85 (1963), 477515.Google Scholar
[9]Glasner, S.. Relatively invariant measures. Pacific J. Math. 58 (1975), 393410.CrossRefGoogle Scholar
[10]Glasner, S.. Proximal Flows. Lecture Notes in Math. 517, Springer Verlag: New York 1976.CrossRefGoogle Scholar
[11]McMahon, D. C.. Relativized weak disjointness and relatively invariant measures. Trans. Amer. Math. Soc. 236 (1978), 225237.Google Scholar
[12]McMahon, D. C. & Wu, T. S.. Notes on topological dynamics V: equicontinuous structure relations of minimal transformation groups. Bull. Inst. Math. Acad. Sinica. 8 (1980), 283294Google Scholar
[13]Michael, E.. Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152182.Google Scholar
[14]Peleg, R.. Weak disjointness of transformation groups. Proc. Amer. Math. Soc. 33 (1972), 165170.CrossRefGoogle Scholar
[15]Veech, W. A.. Topological dynamics. Bull. Amer. Math. Soc. 83 (1977), 775830.CrossRefGoogle Scholar
[16]van der Woude, J. C. S. P.. Weakly mixing remarks. In Rep. ZN 99, Mathematisch Centrum: Amsterdam, 1980.Google Scholar