Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T14:11:49.576Z Has data issue: false hasContentIssue false

Uniqueness and stability of equilibrium states for random non-uniformly expanding maps

Published online by Cambridge University Press:  27 July 2022

R. BILBAO
Affiliation:
Escuela de Matemática y Estatística, UPTC, Sede Central del Norte Av. Central del Norte 39-115, cod. 150003 Tunja, Boyacá, Colombia (e-mail: [email protected])
V. RAMOS*
Affiliation:
Departamento de Matemática, UFMA, Av. dos Portugueses, 1966, 65080-805 São Luís, Maranhão, Brazil

Abstract

We consider a robust class of random non-uniformly expanding local homeomorphisms and Hölder continuous potentials with small variation. For each element of this class we develop the thermodynamical formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, J. F. and Araújo, V.. Random perturbations of nonuniformly expanding maps. Astérisque 286 (2003), 2562.Google Scholar
Alves, J. F., Bonatti, C. and Viana, M.. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140 (2000), 351398.10.1007/s002220000057CrossRefGoogle Scholar
Alves, J. F., Ramos, V. and Siqueira, J.. Equilibrium stability for non-uniformly hyperbolic systems. Ergod. Th. & Dynam. Sys. 39 (2019), 26192642.CrossRefGoogle Scholar
Alves, J. F. and Viana, M.. Statistical stability for robust classes of maps with non-uniform expansion . Ergod. Th. & Dynam. Sys. 22 (2002), 132.CrossRefGoogle Scholar
Arbieto, A., Matheus, C. and Oliveira, K.. Equilibrium states for random non-uniformly expanding maps. Nonlinearity 17 (2004), 581593.CrossRefGoogle Scholar
Arnold, L.. Random Dynamical Systems. Springer-Verlag, Boston, 1998.CrossRefGoogle Scholar
Baladi, V.. Correlation spectrum of quenched and annealed equilibrium states for random expanding maps. Comm. Math. Phys. 186 (1997), 671700.CrossRefGoogle Scholar
Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific Publishing Company, Singapore, 2000.CrossRefGoogle Scholar
Bilbao, R. and Oliveira, K.. Maximizing measure for random dynamical systems. Stoch. Dyn. 17 (2016), 1750032.CrossRefGoogle Scholar
Birkhoff, G.. Lattice Theory (American Mathematical Society Colloquium Publications, 25, pt. 2). American Mathematical Society, New York, 1940.Google Scholar
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.CrossRefGoogle Scholar
Castro, A. and Varandas, P.. Equlibrium states for non-uniformly expanding maps: decay of correlations and strong stability. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 225249.CrossRefGoogle Scholar
Climenhaga, V. and Thompson, D. J.. Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Adv. Math. 303 (2016), 745799.CrossRefGoogle Scholar
Denker, M., Kifer, Y. and Stadlbauer, M.. Thermodynamic formalism for random countable Markov shifts. Discrete Contin. Dyn. Syst. 22 (2008), 131164.Google Scholar
Kifer, Y.. Ergodic Theory of Random Transformations (Progress in Probability and Statistics, 10). Birkhäuser, Boston, 1986.CrossRefGoogle Scholar
Kifer, Y.. Equilibrium states for random dynamical expanding transformations. Random Comput. Dyn. 1 (1992), 131.Google Scholar
Kifer, Y.. Thermodynamic formalism for random transformations revisited. Stoch. Dyn. 81 (2008), 77102.10.1142/S0219493708002238CrossRefGoogle Scholar
Liu, P. D.. Dynamics of random transformations: smooth ergodic theory. Ergod. Th. & Dynam. Sys. 21 (2001), 12791319.CrossRefGoogle Scholar
Liverani, C.. Decay of correlations. Ann. of Math. (2) 142(2) (1995), 239301.10.2307/2118636CrossRefGoogle Scholar
Mayer, V., Skorulski, B. and Urbański, M.. Distance Expanding Random Mappings, Thermodynamic Formalism, Gibbs Measures and Fractal Geometry (Lecture Notes in Mathematics, 2036). Springer-Verlag, Berlin, 2011.10.1007/978-3-642-23650-1CrossRefGoogle Scholar
Oliveira, K. and Viana, M.. Thermodynamical formalism for robust classes of potentials and non-uniformly hyperbolic maps. Ergod. Th. & Dynam. Sys. 28 (2008), 501533.10.1017/S0143385707001009CrossRefGoogle Scholar
Pesin, Y.. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, Chicago, 1997.CrossRefGoogle Scholar
Przytycki, F. and Urbanski, M.. Conformal Fractals: Ergodic Theory Methods (London Mathematical Society Lecture Notes). Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
Rokhlin, V. A.. On the Fundamental Ideas of Measure Theory (American Mathematical Society Translations). American Mathematical Society, Providence, RI, 1962.Google Scholar
Ruelle, D.. Thermodynamic Formalism (Encyclopedia of Mathematics and Its Applications, 5). Addison-Wesley, Reading, MA, 1978.Google Scholar
Sarig, O.. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19 (1999), 15651593.CrossRefGoogle Scholar
Simmons, D. and Urbański, M.. Relative equilibrium states and dimensions of fiberwise invariant measures for random distance expanding maps. Stoch. Dyn. 14 (2014), 1350015.CrossRefGoogle Scholar
Stadlbauer, M., Suzuki, S. and Varandas, P.. Thermodynamic formalism for random non-uniformly expanding maps. Comm. Math. Phys. 385 (2021), 369427.CrossRefGoogle Scholar
Varandas, P. and Viana, M.. Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 555593.CrossRefGoogle Scholar
Young, L.-S.. Stochastic stability of hyperbolic attractors. Ergod. Th. & Dynam. Sys. 6 (1986), 311319.CrossRefGoogle Scholar