Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T04:43:11.802Z Has data issue: false hasContentIssue false

Unique ergodicity of the automorphism group of the semigeneric directed graph

Published online by Cambridge University Press:  28 June 2021

COLIN JAHEL*
Affiliation:
Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Diderot, Paris, France

Abstract

We prove that the automorphism group of the semigeneric directed graph (in the sense of Cherlin’s classification) is uniquely ergodic.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, O., Kechris, A. S. and Lyons, R.. Random orderings and unique ergodicity of automorphism groups. J. Eur. Math. Soc. (JEMS) 16(10) (2012), 20592095.CrossRefGoogle Scholar
Cameron, P. J.. Permutation Groups (London Mathematical Society Student Texts, 45). Cambridge University Press, Cambridge, 1999.Google Scholar
Cherlin, G. L.. The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments. Mem. Amer. Math. Soc. 131(621) (1998).Google Scholar
Ellis, R.. Lectures on Topological Dynamics. W. A. Benjamin, Inc., New York, 1969.Google Scholar
Gut, A.. Probability: A Graduate Course (Springer Texts in Statistics). Springer, New York, 2005.Google Scholar
Glasner, E. and Weiss, B.. Minimal actions of the group $S\left(\mathbb{Z}\right)$ of permutations of the integers. Geom. Funct. Anal. 12(5) (2002), 964988.CrossRefGoogle Scholar
Hodges, W.. Model Theory (Encyclopedia of Mathematics and Its Applications, 42). Cambridge University Press, Cambridge, 1993.Google Scholar
Jasiński, J., Laflamme, C., Nguyen Van Thé, L. and Woodrow, R.. Ramsey precompact expansions of homogeneous directed graphs. Electron. J. Combin. 21(4) (2014), Paper 4.42, 31pp.CrossRefGoogle Scholar
Kechris, A. S., Pestov, V. G. and Todorcevic, S.. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15(1) (2005), 106189.CrossRefGoogle Scholar
Phelps, R. R.. Lectures on Choquet’s Theorem (Lecture Notes in Mathematics, 1757), 2nd edn. Springer, Berlin, 2001.CrossRefGoogle Scholar
Pawliuk, M. and Sokić, M.. Amenability and unique ergodicity of automorphism groups of countable homogeneous directed graphs. Ergod. Th. & Dynam. Sys. 40(5) (2020), 13511401.CrossRefGoogle Scholar
Tsankov, T.. Groupes d’automorphismes et leurs actions. Habilitation Memoir, 2014.Google Scholar
Weiss, B.. Minimal models for free actions. Dynamical Systems and Group Actions. American Mathematical Society, Providence, RI, 2012, 249264.CrossRefGoogle Scholar