Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-05T02:22:26.527Z Has data issue: false hasContentIssue false

Uniformly quasi-isometric foliations

Published online by Cambridge University Press:  19 September 2008

Mark Kellum
Affiliation:
Ecole Normale Supérieure de Lyon, 69364 Lyon, France and University of Maryland, College Park, Maryland, USA

Abstract

Consider the natural action of 1-jets of the holonomy pseudogroup H on the transverse tangent bundle of a C1 compact foliated manifold (M, ℱ). If these 1-jets act in an equicontinuous way then it is possible to use a C1 ‘Ellis semi-group’ technique, as applied to a neighborhood of the identity in H, to produce a sheaf of compact local transformation groups whose orbits are the topological closures of leaves of ℱ. This action on the transverse manifold to ℱ then decomposes M into a union of minimal sets. These minimal sets we show to be C1 embedded submanifolds of M and the action of H on them is locally transitive.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Aus88]Auslander, J.. Minimal Flows and Their Extensions. North-Holland, Amsterdam, 1988.Google Scholar
[Car36]Cartan, H.. Sur les Groupes de Transformations Analyliques. Hermann, Paris, 1936.Google Scholar
[Cav87]Cavalier, V.. Feuilletages transversalment holomorphes, quasi-transversalment parallelisables. Thèse, Academie Montpellier, Université des Sciences et Techniques du Languedoc, Mont pellier, 1987.Google Scholar
[Chev46]Chevalley, C.. Theory of Lie Groups. Princton University Press, Princeton, NJ, 1946.Google Scholar
[DS89]Donaldson, S. K. & Sullivan, D. P.. Quasiconformal 4-manifolds. Acta Math. 163 (1989), 181252.CrossRefGoogle Scholar
[Ell69]Ellis, R.. Lectures on Topological Dynamics. W. A. Benjamin, New York, 1969.Google Scholar
[Eps]Epstein, D.. Problem session on foliations. 1CM Berkeley, 1986.Google Scholar
[ES56]Ehresmann, C. & Shih, W.. Sur les espaces feuilletés; théorème de stabilitè. C. R. Acad Sci. Paris, Série A, 243 (1956), 344346.Google Scholar
[Furst 63]Furstenberg, H.. The structure of distal flows. Amer. J. Math. 85 (1963), 477515.Google Scholar
[Ghy88]Ghys, E.. In: Riemannian Foliations (by P. Molino), Appendix E—Riemannian Foliations: Examples and Problems, pp. 297314. Birkhäuser, Boston, 1988.Google Scholar
[Gle52]Gleason, A.. Groups without small subgroups. Ann. Math. 56 (1952), 193212.CrossRefGoogle Scholar
[Hae62]Haefliger, A.. Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa 16 (1962), 367397.Google Scholar
[Hae89]Haefliger, A.. Feuilletages riemanniens. In: Séminaire Bourbaki 707 (1989), 115.Google Scholar
[Hae84]Haefliger, A.. Pseudogroups of local isometries. Preprint, 1984.Google Scholar
[Herm]Herman, M.. Private communication.Google Scholar
[Jac57]Jacoby, R.. Some theorems on the structure of locally compact local groups. Ann. Math. 66 (1957), 3669.Google Scholar
[Kap71]Kaplansky, I.. Lie Algebras and Locally Compact Groups. The University of Chicago Press, Chicago and London, 1971.Google Scholar
[Karu66]Karube, T.. Transformation groups satisfying some local metric conditions. J. Math. Soc. Japan 18 (1966), 4550.Google Scholar
[Mk-Mk91]Keane, M. S. & Kellum, M.. On topologically Riemannian foliations. Preprint.Google Scholar
[Mk1-91]Kellum, M.. Stability for uniformly quasi-isometric foliations. Preprint.Google Scholar
[Mk2-92]Kellum, M.. Measurable orbit equivalence for uniformly Lipschitz foliations. Preprint.Google Scholar
[Kur50]Kuranishi, M.. On conditions of differentiability of locally compact groups. Nagoya Math. J. 1 (1950), 7181.Google Scholar
[Mol82]Molino, P.. Geométrie globale des feuilletages riemanniens. Ned. Akad. von Wet., Indag. Math. 85 (1982), 4576.Google Scholar
[Mon45]Montgomery, D.. Topological groups of differentiable transformations. Ann. Math. 46 (1945), 382387.CrossRefGoogle Scholar
[MZ55]Montgomery, D. & Zippin, L.. Topological Transformation Groups. Interscience Publishers, New York, 1955.Google Scholar
[Pon39]Pontryagin, L.. Topological Groups. Princeton University Press, Princeton, NJ, 1939.Google Scholar
[Ree52]Reeb, G.. Sur Certains Propriétés Topologiques des Variétés Feuilletées. Hermann, Paris, 1952.Google Scholar
[Rei59]Reinhart, B.. Foliated manifolds with bundle-like metrics. Ann. Math. 69 (1959), 119132.Google Scholar
[Sa65]Sacksteder, R.. Foliations and pseudogroups. Amer. J. Math. 87 (1965), 79102.Google Scholar
[Sal88]Salem, E.. Riemannian Foliations (by P. Molino), Appendix D—Riemannian Foliations and Pseudogroups of Isometries. Pp. 265296. Birkhäuser, Boston, 1988.Google Scholar
[Sul]Sullivan, D.. Private communication.Google Scholar
[Sul81]Sullivan, D.. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. In: Riemann Surfaces and Related Topics; Proc. 1978 Stony Brook Conf. Pp 465496. Princeton University Press, Princeton, 1981.Google Scholar
[Sul83]Sullivan, D.. Conformal dynamical systems. In: Proc. Int. Conf. on Dynamical Systems, Rio de Janeiro. P. 725. Springer Lecture Notes in Mathematics 1007. Springer, Berlin, 1983.Google Scholar
[Yam53]Yamabe, H.. A generalization of a theorem of Gleason. Ann. Math. 58 (1953), 351365.Google Scholar