Article contents
Uniformly positive entropy of induced transformations
Published online by Cambridge University Press: 28 December 2020
Abstract
Let $(X,T)$ be a topological dynamical system consisting of a compact metric space X and a continuous surjective map $T : X \to X$ . By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $({\mathcal {M}}(X),\widetilde {T})$ on the space of Borel probability measures endowed with the weak* topology. This result can be seen as a version for the notion of uniformly positive entropy of the corresponding result for topological entropy due to Glasner and Weiss.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
References
REFERENCES
- 2
- Cited by