Article contents
(Uniform) convergence of twisted ergodic averages
Published online by Cambridge University Press: 13 April 2015
Abstract
Let $T$ be an ergodic measure-preserving transformation on a non-atomic probability space
$(X,\unicode[STIX]{x1D6F4},\unicode[STIX]{x1D707})$. We prove uniform extensions of the Wiener–Wintner theorem in two settings: for averages involving weights coming from Hardy field functions
$p$,
$$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(p(n))T^{n}f(x)\bigg\}; & & \displaystyle \nonumber\end{eqnarray}$$
$$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(n\unicode[STIX]{x1D703})T^{P(n)}f(x)\bigg\} & & \displaystyle \nonumber\end{eqnarray}$$
$\unicode[STIX]{x1D703}\in [0,1]$. We also give an elementary proof that the above twisted polynomial averages converge pointwise
$\unicode[STIX]{x1D707}$-almost everywhere for
$f\in L^{p}(X),p>1,$ and arbitrary
$\unicode[STIX]{x1D703}\in [0,1]$.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2015
References
- 7
- Cited by