Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T04:04:44.089Z Has data issue: false hasContentIssue false

The $\unicode[STIX]{x1D6FD}$-transformation with a hole at 0

Published online by Cambridge University Press:  25 March 2019

CHARLENE KALLE
Affiliation:
Mathematical Institute, University of Leiden, PO Box 9512, 2300RA Leiden, The Netherlands email [email protected], [email protected]
DERONG KONG
Affiliation:
College of Mathematics and Statistics, Chongqing University, Chongqing401331, PR China email [email protected]
NIELS LANGEVELD
Affiliation:
Mathematical Institute, University of Leiden, PO Box 9512, 2300RA Leiden, The Netherlands email [email protected], [email protected]
WENXIA LI
Affiliation:
School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai200062, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For $\unicode[STIX]{x1D6FD}\in (1,2]$ the $\unicode[STIX]{x1D6FD}$-transformation $T_{\unicode[STIX]{x1D6FD}}:[0,1)\rightarrow [0,1)$ is defined by $T_{\unicode[STIX]{x1D6FD}}(x)=\unicode[STIX]{x1D6FD}x\hspace{0.6em}({\rm mod}\hspace{0.2em}1)$. For $t\in [0,1)$ let $K_{\unicode[STIX]{x1D6FD}}(t)$ be the survivor set of $T_{\unicode[STIX]{x1D6FD}}$ with hole $(0,t)$ given by

$$\begin{eqnarray}K_{\unicode[STIX]{x1D6FD}}(t):=\{x\in [0,1):T_{\unicode[STIX]{x1D6FD}}^{n}(x)\not \in (0,t)\text{ for all }n\geq 0\}.\end{eqnarray}$$
In this paper we characterize the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ of all parameters $t\in [0,1)$ for which the set-valued function $t\mapsto K_{\unicode[STIX]{x1D6FD}}(t)$ is not locally constant. We show that $E_{\unicode[STIX]{x1D6FD}}$ is a Lebesgue null set of full Hausdorff dimension for all $\unicode[STIX]{x1D6FD}\in (1,2)$. We prove that for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1,2)$ the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ contains infinitely many isolated points and infinitely many accumulation points arbitrarily close to zero. On the other hand, we show that the set of $\unicode[STIX]{x1D6FD}\in (1,2)$ for which $E_{\unicode[STIX]{x1D6FD}}$ contains no isolated points has zero Hausdorff dimension. These results contrast with the situation for $E_{2}$, the bifurcation set of the doubling map. Finally, we give for each $\unicode[STIX]{x1D6FD}\in (1,2)$ a lower and an upper bound for the value $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$ such that the Hausdorff dimension of $K_{\unicode[STIX]{x1D6FD}}(t)$ is positive if and only if $t<\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$. We show that $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}\leq 1-(1/\unicode[STIX]{x1D6FD})$ for all $\unicode[STIX]{x1D6FD}\in (1,2)$.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2019

References

Alcaraz Barrera, R.. Topological and ergodic properties of symmetric sub-shifts. Discrete Contin. Dyn. Syst. 34(11) (2014), 44594486.Google Scholar
Bugeaud, Y. and Wang, B.. Distribution of full cylinders and the Diophantine properties of the orbits in 𝛽-expansions. J. Fractal Geom. 1(2) (2014), 221241.Google Scholar
Bunimovich, L. and Yurchenko, A.. Where to place a hole to achieve a maximal escape rate. Israel J. Math. 182 (2011), 229252.Google Scholar
Cao, C.-Y.. A result on the approximation properties of the orbit of 1 under the 𝛽-transformation. J. Math. Anal. Appl. 420(1) (2014), 242256.Google Scholar
Carminati, C., Isola, S. and Tiozzo, G.. Continued fractions with SL(2, ℤ)-branches: combinatorics and entropy. Trans. Amer. Math. Soc. 370(7) (2018), 49274973.Google Scholar
Clark, L.. The 𝛽-transformation with a hole. Discrete Contin. Dyn. Syst. 36(3) (2016), 12491269.Google Scholar
Carminati, C. and Tiozzo, G.. The local Hölder exponent for the dimension of invariant subsets of the circle. Ergod. Th. & Dynam. Sys. 37(6) (2017), 18251840.Google Scholar
Dettmann, C.. Open circle maps: small hole asymptotics. Nonlinearity 26(1) (2013), 307317.Google Scholar
de Vries, M., Komornik, V. and Loreti, P.. Topology of the set of univoque bases. Topology Appl. 205 (2016), 117137.Google Scholar
Ge, Y. and , F.. A note on inhomogeneous Diophantine approximation in beta-dynamical system. Bull. Aust. Math. Soc. 91(1) (2015), 3440.Google Scholar
Glendinning, P. and Sidorov, N.. The doubling map with asymmetrical holes. Ergod. Th. & Dynam. Sys. 35(4) (2015), 12081228.Google Scholar
Komornik, V. and Loreti, P.. On the topological structure of univoque sets. J. Number Theory 122(1) (2007), 157183.Google Scholar
Lothaire, M.. Algebraic Combinatorics on Words. Cambridge University Press, Cambridge, 2002.Google Scholar
Li, B., Persson, T., Wang, B. and Wu, J.. Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions. Math. Z. 276(3–4) (2014), 799827.Google Scholar
, F. and Wu, J.. Diophantine analysis in beta-dynamical systems and Hausdorff dimensions. Adv. Math. 290 (2016), 919937.Google Scholar
Nilsson, J.. On numbers badly approximable by $q$-adic rationals. PhD Thesis, Lund University and Université du Sud Toulon-Var, 2007.Google Scholar
Nilsson, J.. On numbers badly approximable by dyadic rationals. Israel J. Math. 171 (2009), 93110.Google Scholar
Parry, W.. On the 𝛽-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401416.Google Scholar
Persson, T. and Schmeling, J.. Dyadic Diophantine approximation and Katok’s horseshoe approximation. Acta Arith. 132(3) (2008), 205230.Google Scholar
Raith, P.. Hausdorff dimension for piecewise monotonic maps. Studia Math. 94(1) (1989), 1733.Google Scholar
Raith, P.. Continuity of the Hausdorff dimension for piecewise monotonic maps. Israel J. Math. 80(1–2) (1992), 97133.Google Scholar
Raith, P.. Continuity of the Hausdorff dimension for invariant subsets of interval maps. Acta Math. Univ. Comenian. (N.S.) 63(1) (1994), 3953.Google Scholar
Rényi, A.. On algorithms for the generation of real numbers. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 265293.Google Scholar
Schmeling, J.. Symbolic dynamics for 𝛽-shifts and self-normal numbers. Ergod. Th. & Dynam. Sys. 17(3) (1997), 675694.Google Scholar
Sidorov, N.. Supercritical holes for the doubling map. Acta Math. Hungar. 143(2) (2014), 298312.Google Scholar
Siromoney, R., Mathew, L., Dare, V. R. and Subramanian, K. G.. Infinite Lyndon words. Inform. Process. Lett. 50(2) (1994), 101104.Google Scholar
Urbański, M.. On Hausdorff dimension of invariant sets for expanding maps of a circle. Ergod. Th. & Dynam. Sys. 6(2) (1986), 295309.Google Scholar
Urbański, M.. Invariant subsets of expanding mappings of the circle. Ergod. Th. & Dynam. Sys. 7(4) (1987), 627645.Google Scholar