Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T05:55:26.407Z Has data issue: false hasContentIssue false

Tower systems for linearly repetitive Delone sets

Published online by Cambridge University Press:  23 November 2010

JOSÉ ALISTE-PRIETO
Affiliation:
Centro de Modelamiento Matemático, Universidad de Chile, Blanco Encalada 2120, 7to. piso. Santiago, Chile (email: [email protected])
DANIEL CORONEL
Affiliation:
Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile (email: [email protected])

Abstract

In this paper we study linearly repetitive Delone sets and prove, following the work of Bellissard, Benedetti and Gambaudo, that the hull of a linearly repetitive Delone set admits a properly nested sequence of box decompositions (tower system) with strictly positive and uniformly bounded (in size and norm) transition matrices. This generalizes a result of Durand for linearly recurrent symbolic systems. Furthermore, we apply this result to give a new proof of a classic estimation of Lagarias and Pleasants on the rate of convergence of patch frequencies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AP98]Anderson, J. E. and Putnam, I. F.. Topological invariants for substitution tilings and their associated C *-algebras. Ergod. Th. & Dynam. Sys. 18(3) (1998), 509537; MR 1631708(2000a:46112).CrossRefGoogle Scholar
[BBG06]Bellissard, J., Benedetti, R. and Gambaudo, J. M.. Spaces of tilings, finite telescopic approximations and gap-labeling. Comm. Math. Phys. 261(1) (2006), 141; MR 2193205(2007c:46063).CrossRefGoogle Scholar
[BDM05]Bressaud, X., Durand, F. and Maass, A.. Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems. J. Lond. Math. Soc. (2) 72(3) (2005), 799816; MR 2190338(2006j:37011).Google Scholar
[BDM10]Bressaud, X., Durand, F. and Maass, A.. Continuous and measurable eigenvalues of finite rank Bratteli–Vershik dynamical systems. Ergod. Th. & Dynam. Sys. 30(3) (2010), 639664.CrossRefGoogle Scholar
[Bes08a]Besbes, A.. Uniform ergodic theorems on aperiodic linearly repetitive tilings and applications. Rev. Math. Phys. 20(5) (2008), 597623; MR 2422207.CrossRefGoogle Scholar
[Bes08b]Besbes, A.. Contributions a l’étude de quelques systèmes quasi-crystallographics (in French). PhD Thesis, Université Pierre et Marie Curie, Paris, 2008.Google Scholar
[BG03]Benedetti, R. and Gambaudo, J. M.. On the dynamics of 𝔾-solenoids. Applications to Delone sets. Ergod. Th. & Dynam. Sys. 23(3) (2003), 673691; MR 1992658(2004f:37019).Google Scholar
[CDHM03]Cortez, M. I., Durand, F., Host, B. and Maass, A.. Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. J. Lond. Math. Soc. (2) 67(3) (2003), 790804; MR 1967706(2004b:37018).CrossRefGoogle Scholar
[CFS82]Cornfeld, I. P., Fomin, S. V. and Sinaĭ, Ya. G.. Ergodic Theory (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245). Springer, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ; MR 832433(87f:28019).CrossRefGoogle Scholar
[CGM07]Cortez, M. I., Gambaudo, J. M. and Maass, A.. Rotation topological factors of minimal ℤd-actions of the Cantor set. Trans. Amer. Math. Soc. 359(5) (2007), 23052315; MR 2276621(2007k:37010).Google Scholar
[Cor]Coronel, D.. The cohomological equation over dynamical systems arising from Delone sets. Ergod. Th. & Dynam. Sys., doi:10.1017/S0143385710000209.CrossRefGoogle Scholar
[DL06]Damanik, D. and Lenz, D.. Substitution dynamical systems: characterization of linear repetitivity and applications. J. Math. Anal. Appl. 321(2) (2006), 766780; MR 2241154(2007d:37008).CrossRefGoogle Scholar
[Dur00]Durand, F.. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys. 20(4) (2000), 10611078; MR 1779393(2001m:37022).Google Scholar
[For00]Forrest, A.. A Bratteli diagram for commuting homeomorphisms of the Cantor set. Internat. J. Math. 11(2) (2000), 177200; MR 1754619(2001d:37008).CrossRefGoogle Scholar
[Ghy99]Ghys, É.. Laminations par surfaces de Riemann. Dynamique et Géométrie Complexes (Lyon, 1997) (Panoramas et Synthèses, 8). Société Mathématique de France, Paris, 1999, pp. 49; 95MR 1760843(2001g:37068).Google Scholar
[GM06]Gambaudo, J.-M. and Martens, M.. Algebraic topology for minimal Cantor sets. Ann. Henri Poincaré 7(3) (2006), 423446; MR 2226743(2006m:37007).CrossRefGoogle Scholar
[GMPS10]Giordano, T., Matui, H., Putnam, I. F. and Skau, C. F.. Orbit equivalence for Cantor minimal ℤd-systems. Invent. Math. 179(1) (2010), 119158.Google Scholar
[HPS92]Herman, R. H., Putnam, I. F. and Skau, C. F.. Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6) (1992), 827864; MR 1194074(94f:46096).CrossRefGoogle Scholar
[KP00]Kellendonk, J. and Putnam, I. F.. Tilings, C *-algebras, and K-theory (Directions in Mathematical Quasicrystals, 13). American Mathematical Society, Providence, RI, 2000, pp. 177206; MR 1798993(2001m:46153).Google Scholar
[Len04]Lenz, D.. Aperiodic linearly repetitive Delone sets are densely repetitive. Discrete Comput. Geom. 31(2) (2004), 323326; MR 2060644(2005a:37027).CrossRefGoogle Scholar
[LMS02]Lee, J. Y., Moody, R. V. and Solomyak, B.. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3(5) (2002), 10031018; MR 1937612(2004a:52040).CrossRefGoogle Scholar
[LP03]Lagarias, J. C. and Pleasants, P. A. B.. Repetitive Delone sets and quasicrystals. Ergod. Th. & Dynam. Sys. 23(3) (2003), 831867; MR 1992666(2005a:52018).CrossRefGoogle Scholar
[LS05]Lenz, D. and Stollmann, P.. An ergodic theorem for Delone dynamical systems and existence of the integrated density of states. J. Anal. Math. 97 (2005), 124; MR 2274971(2007m:37020).CrossRefGoogle Scholar
[Moo97]Moody (ed.), R. V.. The Mathematics of Long-range Aperiodic Order (NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 489). Kluwer Academic Publishers Group, Dordrecht, 1997; MR 1460016(98a:52001).CrossRefGoogle Scholar
[Pri97]Priebe, N. M.. Detecting hierarchy in tiling dynamical systems via derived Voronoï tessellations. PhD Thesis, University of North Carolina at Chapel Hill, 1997.Google Scholar
[PS01]Priebe, N. and Solomyak, B.. Characterization of planar pseudo-self-similar tilings. Discrete Comput. Geom. 26(3) (2001), 289306; MR 1854103(2002j:37029).CrossRefGoogle Scholar
[Rob04]Arthur Robinson, E. Jr. Symbolic Dynamics and Tilings of ℝd (Symbolic Dynamics and its Applications, 60). American Mathematical Society, Providence, RI, 2004, pp. 81119; MR 2078847(2005h:37036).Google Scholar
[SBGC84]Shecthman, D., Blech, I., Gratias, D. and Cahn, J. W.. Metallic phase with long range orientational order and no translational symetry. Phys. Rev. Lett. 53(20) (1984), 19511954.Google Scholar
[Sen81]Seneta, E.. Nonnegative Matrices and Markov Chains, 2nd edn(Springer Series in Statistics). Springer, New York, 1981; MR 719544(85i:60058).CrossRefGoogle Scholar
[Sen95]Senechal, M.. Quasicrystals and Geometry. Cambridge University Press, Cambridge, 1995; MR 1340198(96c:52038).Google Scholar
[Sol98]Solomyak, B.. Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20(2) (1998), 265279; MR 1637896(99f:52028).Google Scholar
[SW03]Sadun, L. and Williams, R. F.. Tiling spaces are Cantor set fiber bundles. Ergod. Th. & Dynam. Sys. 23(1) (2003), 307316; MR 1971208(2004a:37023).CrossRefGoogle Scholar