Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T04:11:00.695Z Has data issue: false hasContentIssue false

Topology and growth of a special class of holomorphic self-maps of ℂ*

Published online by Cambridge University Press:  19 September 2008

Linda Keen
Affiliation:
Department of Mathematics, Lehman College, Bronx, New York, 10468, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is a general problem to find appropriate sets of moduli for families of functions that generate dynamical systems. In this paper we solve this problem for a specific family of holomorphic self-maps of ℂ* defined by

The main theorem states that any function topologically conjugate to a member of ℱ is holomorphically conjugate to some member of the family. It follows that the coefficients of the polynomials P(z) and Q(z) are a suitable set of moduli for the families of dynamical systems generated by these functions.

The moduli spaces of functions in ℱ are easy to study computationally and have been studied by many authors. (See references in the text.)

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

REFERENCES

[A]Ahlfors, L. V.. Lectures on Quasiconformal Mappings. Van Nostrand, New York, 1966.Google Scholar
[AB]Ahlfors, L. V. and Bers, L.. Riemann's mapping theorem for variable metrics. Ann. of Math. 72 (1960).CrossRefGoogle Scholar
[Be1]Bers, L.. Quasiconformal mappings and Teichmiiller's theorem, in Analytic Functions. Princeton, 1960, pp. 89119.Google Scholar
[Be2]Bers, L.. Uniformization by Beltrami equations. Comm. Pure and Applied Math. 14 3 (1961), pp. 215228.CrossRefGoogle Scholar
[Bl]Blanchard, P.. Complex analytic dynamics on the Riemann Sphere. Bull. A.M.S. 11 (1984).CrossRefGoogle Scholar
[GGS]Ghys, E., Goldberg, L. and Sullivan, D.. On the measurable dynamics of z → exp (z). Ergod. Th. & Dynam. Sys. 5 (1985).CrossRefGoogle Scholar
[GK]Goldberg, L. & Keen, L.. A finiteness theorem for a dynamical class of entire functions. Ergod. Th. & Dynam. Sys. 6 (1986), 183.CrossRefGoogle Scholar
[Kn]Keen, L.. Dynamics of holomorphic maps of C*, in Holomorphic Functions and Moduli. Vol. I, ed. Drasin, D., Springer, Berlin-New York, 1988.Google Scholar
[Ku]Künzi, H.. Quasikonforme Abbildungen, Springer-Verlag, Berlin-New York, 1960.CrossRefGoogle Scholar
[LV]Lehto, O. & Virtanen, K.. Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin-New York, 1973.CrossRefGoogle Scholar
[LeV]Thiem, Le-Van. Über das Umkehrproblem der Wertverteilungslehre. Comment. math. Helv. 23 (1949).CrossRefGoogle Scholar
[McM]McMullen, C.. Area and Hausdorff dimension of Julia sets of entire functions. Trans. AMS 300 (1987), 1, 329342.CrossRefGoogle Scholar
[N]Nevanlinna, R.. Analytic Functions. Springer-Verlag, Berlin-New York, 1970.CrossRefGoogle Scholar
[Po]Pöschl, K.. Über die Wertverteilung der erzeugenden Funktionen Riemannscher Flächen mit endlich vielen periodischen Enden. Math. Ann. 123 (1951), Helv. 2 (1930).CrossRefGoogle Scholar
[Sul]Sullivan, D.. Quasiconformal homeomorphisms and dynamics III, Acta Math, to appear.Google Scholar
[Tei]Teichmüller, O.. Untersuchungen über konforme und quasikonforme Abbildungen. Deutsche Math. 3 (1938).Google Scholar
[V]Valiron, G.. Theory of Integral Functions. Chelsea, 1949.Google Scholar
[Wi1]Wittich, H.. Zum Beweis eines Satzes uber quasikonforme Abbildungen. Math. Zeit. 51 (1948).CrossRefGoogle Scholar
[Wi2]Wittich, H.. Über die Wachstumsordung einer ganzen transzendenten Funktion. Math. Zeit. 51 (1948).Google Scholar