Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T04:06:19.822Z Has data issue: false hasContentIssue false

Tessellation and Lyubich–Minsky laminations associated with quadratic maps, I: pinching semiconjugacies

Published online by Cambridge University Press:  01 April 2009

TOMOKI KAWAHIRA*
Affiliation:
Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan (email: [email protected])

Abstract

We construct tessellations of the filled Julia sets of hyperbolic and parabolic quadratic maps. The dynamics inside the Julia sets are then organized by tiles which play the role of the external rays outside. We also construct continuous families of pinching semiconjugacies associated with hyperbolic-to-parabolic degenerations without using quasiconformal deformation. Instead, we achieve this via tessellation and investigation of the hyperbolic-to-parabolic degeneration of linearizing coordinates inside the Julia set.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cui, G.. Geometrically finite rational maps with given combinatorics. Preprint, 1997.Google Scholar
[2]Douady, A. and Hubbard, J. H.. Etude dynamique des polynômes complexes I & II. Publ. Math. Orsay, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984/85, 84-2, 85-4.Google Scholar
[3]Goldberg, L. R. and Milnor, J.. Fixed points of polynomial maps, Part II: Fixed point portraits. Ann. Sci. École Norm. Sup. 26 (1993), 5198.CrossRefGoogle Scholar
[4]Haïssinsky, P.. Modulation dans l’ensemble de Mandelbrot. The Mandelbrot Set, Theme and Variations. (Lond. Math. Soc. Lec. Note Ser., 274). Ed. L. Tan. Cambridge University Press, Cambridge, 2000, pp. 3765.CrossRefGoogle Scholar
[5]Haïssinsky, P.. Pincement de polynômes. Comment. Math. Helv. 77 (2002), 123.Google Scholar
[6]Haïssinsky, P. and Lei, T.. Convergence of pinching deformations and matings of geometrically finite polynomials. Fund. Math. 181 (2004), 143188.CrossRefGoogle Scholar
[7]Kawahira, T.. Semiconjugacies between the Julia sets of geometrically finite rational maps. Ergod. Th. & Dynam. Sys. 23 (2003), 11251152.CrossRefGoogle Scholar
[8]Kawahira, T.. Semiconjugacies in complex dynamics with parabolic cycles. Thesis, University of Tokyo, 2003. Available at http://www.math.sunysb.edu/dynamics/theses/index.html.Google Scholar
[9]Kawahira, T.. Tessellations and Lyubich–Minsky laminations associated with quadratic maps II: Topological structures of 3-laminations. Conform. Geom. Dyn. to appear (arXiv:math.DS/0609836).Google Scholar
[10]Kawahira, T.. A proof of simultaneous linearization with a polylog estimate. Bull. Pol. Acad. Sci. Math. 55 (2007), 4352.CrossRefGoogle Scholar
[11]Kiwi, J.. Wandering orbit portrait. Trans. Amer. Math. Soc. 354 (2001), 14371485.CrossRefGoogle Scholar
[12]Lyubich, M. and Minsky, Y.. Laminations in holomorphic dynamics. J. Differential Geom. 47 (1997), 1794.CrossRefGoogle Scholar
[13]Milnor, J.. Dynamics in One Complex Variable, 3rd edn(Annals of Math Studies, 160). Princeton University Press, Princeton, NJ, 2006.Google Scholar
[14]Milnor, J.. Periodic orbits, external rays, and the Mandelbrot set: an expository account. Géométrie complexe et systèmes dynamiques. Eds. M. Flexor et al. Astérisque 261 (2000), 277–333.Google Scholar
[15]Pommerenke, Ch.. Boundary Behaviour of Conformal Maps. Springer, Berlin, 1992.CrossRefGoogle Scholar
[16]Shishikura, M.. The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. of Math. (2) 147 (1998), 225267.CrossRefGoogle Scholar
[17]Lei, T.. On pinching deformation of rational maps. Ann. Sci. École Norm. Sup. 35 (2002), 353370.Google Scholar
[18]Ueda, T.. Simultaneous linearization of holomorphic maps with hyperbolic and parabolic fixed points. Publ. Res. Inst. Math. Sci. 44(1) (2008), 91105.CrossRefGoogle Scholar