Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T04:43:16.397Z Has data issue: false hasContentIssue false

Structural stability of attractor–repellor endomorphisms with singularities

Published online by Cambridge University Press:  10 June 2011

PIERRE BERGER*
Affiliation:
CNRS-IMPA-LAGA UMR 7539, Institut Galilée Université, Paris 13, 99 avenue, J.B. Clément, 93430 Villetaneuse, France (email: [email protected])

Abstract

We prove a theorem on the structural stability of smooth attractor–repellor endomorphisms of compact manifolds, with singularities. By attractor–repellor, we mean that the non-wandering set of the dynamics f is the disjoint union of an expanding compact subset with a hyperbolic attractor on which f acts bijectively. The statement of this result is both infinitesimal and dynamical. To our knowledge, this is the first in this hybrid direction. Our results also generalize Mather’s theorem in singularity theory, which states that infinitesimal stability implies structural stability for composed mappings to the larger category of laminations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AGZV85]Arnol’d, V. I., Guseĭn-Zade, S. M. and Varchenko, A. N.. Singularities of Differentiable Maps, Vol. I (Monographs in Mathematics, 82). Birkhäuser Boston Inc., Boston, MA, 1985.CrossRefGoogle Scholar
[AM69]Atiyah, M. F. and Macdonald, I. G.. Introduction to Commutative Algebra. Addison-Wesley Publishing Company, Reading, MA–London–Don Mills, Ontario, 1969.Google Scholar
[Baa73]Baas, N. A.. On the models of Thom in biology and morphogenesis. Math. Biosci. 17 (1973), 173187.CrossRefGoogle Scholar
[Baa74]Baas, N. A.. Structural stability of composed mappings part I. Preprint, 1974.Google Scholar
[Ber10]Berger, P.. Persistence of laminations. Bull. Braz. Math. Soc. (N.S.) 41(2) (2010), 259319.CrossRefGoogle Scholar
[Buc77]Buchner, M. A.. Stability of the cut locus in dimensions less than or equal to 6. Invent. Math. 43(3) (1977).CrossRefGoogle Scholar
[dMvS93]de Melo, W. and van Strien, S.. One-dimensional Dynamics (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 [Results in Mathematics and Related Areas (3)], 25). Springer, Berlin, 1993.CrossRefGoogle Scholar
[Duf77]Dufour, J.-P.. Sur la stabilité des diagrammes d’applications différentiables. Ann. Sci. Éc. Norm. Supér. (4) 10(2) (1977), 153174.CrossRefGoogle Scholar
[GG73]Golubitsky, M. and Guillemin, V.. Stable Mappings and Their Singularities (Graduate Texts in Mathematics, 464). Springer, Berlin, 1973.CrossRefGoogle Scholar
[Ghy99]Ghys, É.. Laminations par surfaces de Riemann. Dynamique et géométrie complexes (Lyon, 1997) (Panoramas et Synthèses, 8). Soc. Math. France, Paris, 1999.Google Scholar
[IPR97]Iglesias, J., Portela, A. and Rovella, A.. Structurally stable perturbations of polynomials in the Riemann sphere. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(6) (2008), 12091220.CrossRefGoogle Scholar
[IPR08]Iglesias, J., Portela, A. and Rovella, A.. C 1 stable maps: examples without saddles. Fund. Math. 208(1) (2010), 2333.CrossRefGoogle Scholar
[KSvS07]Kozlovski, O., Shen, W. and van Strien, S.. Density of hyperbolicity in dimension one. Ann. of Math. (2) 166(1) (2007), 145182.CrossRefGoogle Scholar
[Man88]Mañé, R.. A proof of the C1 stability conjecture. Publ. Math. Inst. Hautes Études Sci. 66 (1988), 161210.CrossRefGoogle Scholar
[Mat68a]Mather, J. N.. Stability of C∞ mappings. I. The division theorem. Ann. of Math. (2) 87 (1968), 89104.CrossRefGoogle Scholar
[Mat68b]Mather, J. N.. Stability of C∞ mappings. III. Finitely determined mapgerms. Publ. Math. Inst. Hautes Études Sci. 35 (1968), 279308.CrossRefGoogle Scholar
[Mat69]Mather, J. N.. Stability of C∞ mappings. II. Infinitesimal stability implies stability. Ann. of Math. (2) 89 (1969), 254291.CrossRefGoogle Scholar
[MSS83]Mañé, R., Sad, P. and Sullivan, D.. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4) 16(2) (1983), 193217; http://www.numdam.org/item?id=ASENS_1983_4_16_2_193_0.CrossRefGoogle Scholar
[Nak89]Nakai, I.. Topological stability theorem for composite mappings. Ann. Inst. Fourier (Grenoble) 39(2) (1989), 459500.CrossRefGoogle Scholar
[Pha67]Pham, F.. Singularités des processus de diffusion multiple. Ann. Inst. H. Poincaré Sect. A (N.S.) 6 (1967), 89204.Google Scholar
[Prz77]Przytycki, F.. On U-stability and structural stability of endomorphisms satisfying axiom A. Studia Math. 60(1) (1977), 6177.CrossRefGoogle Scholar
[PS70]Palis, J. and Smale, S.. Structural stability theorems. Global Analysis (Proceedings of Symposia in Pure Mathematics, XIV, Berkeley, CA, 1968). American Mathematical Society, Providence, RI, 1970, pp. 223231.Google Scholar
[Rob76]Robinson, C.. Structural stability of C1 diffeomorphisms. J. Differential Equations 22(1) (1976), 2873.CrossRefGoogle Scholar
[Shu69]Shub, M.. Endomorphisms of compact differentiable manifolds. Amer. J. Math. 91 (1969), 175199.CrossRefGoogle Scholar
[Tho71]Thom, R.. Modèles mathématiques de la morphogénèse. Accademia Nazionale dei Lincei, Lezioni Fermiane, Classe di Scienze, 1971, p. 81.Google Scholar
[Tou95]Tougeron, J.-C.. Stabilité des applications différentiables (d’après J. Mather) (Séminaire Bourbaki, 10). Soc. Math. France, Paris, 1995, pp. 336, 375–390.Google Scholar