Published online by Cambridge University Press: 02 May 2017
We consider random walks on the mapping class group that have finite first moment with respect to the word metric, whose support generates a non-elementary subgroup and contains a pseudo-Anosov map whose invariant Teichmüller geodesic is in the principal stratum. For such random walks, we show that mapping classes along almost every infinite sample path are eventually pseudo-Anosov, with invariant Teichmüller geodesics in the principal stratum. This provides an answer to a question of Kapovich and Pfaff [Internat. J. Algebra Comput.25, 2015 (5) 745–798].