Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T22:54:44.707Z Has data issue: false hasContentIssue false

Spiders’ webs and locally connected Julia sets of transcendental entire functions

Published online by Cambridge University Press:  18 July 2012

J. W. OSBORNE*
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK (email: [email protected])

Abstract

We show that if the Julia set of a transcendental entire function is locally connected, then it takes the form of a spider’s web in the sense defined by Rippon and Stallard. In the opposite direction, we prove that a spider’s web Julia set is always locally connected at a dense subset of buried points. We also show that the set of buried points (the residual Julia set) can be a spider’s web.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baker, I. N.. Completely invariant domains of entire functions. Mathematical Essays Dedicated to A. J. Macintyre. Ed. Shankar, H.. Ohio University Press, Athens, Ohio, 1970, pp. 3335.Google Scholar
[2]Baker, I. N.. Dynamics of slowly growing entire functions. Bull. Aust. Math. Soc. 63 (2001), 367377.Google Scholar
[3]Baker, I. N. and Domínguez, P.. Some connectedness properties of Julia sets. Complex Var. Theory Appl. 41(4) (2000), 371389.Google Scholar
[4]Baker, I. N. and Domínguez, P.. Residual Julia sets. J. Anal. 8 (2000), 121137.Google Scholar
[5]Baker, I. N. and Weinreich, J.. Boundaries which arise in the dynamics of entire functions. Proceedings of the International Colloquium on Complex Analysis, Bucharest. Rev. Roumaine Math. Pures Appl. 36 (1991), 413–420.Google Scholar
[6]Beardon, A. F.. Iteration of Rational Functions (Graduate Texts in Mathematics, 132). Springer, New York, 1991.Google Scholar
[7]Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151188.Google Scholar
[8]Bergweiler, W.. The role of the Ahlfors five islands theorem in complex dynamics. Conform. Geom. Dyn. 4 (2000), 2234.Google Scholar
[9]Bergweiler, W. and Hinkkanen, A.. On semiconjugation of entire functions. Math. Proc. Cambridge Philos. Soc. 126 (1999), 565574.Google Scholar
[10]Bergweiler, W. and Morosawa, S.. Semihyperbolic entire functions. Nonlinearity 15 (2002), 16731684.Google Scholar
[11]Boyd, D. A.. An entire function with slow growth and simple dynamics. Ergod. Th. & Dynam. Sys. 22 (2002), 317322.Google Scholar
[12]Carleson, L. and Gamelin, T. W.. Complex Dynamics. Springer, New York, 1993.Google Scholar
[13]Carleson, L., Jones, P. W. and Yoccoz, J.-C.. Julia and John. Bol. Soc. Brasil. Mat. (N.S.) 25(1) (1994), 130.Google Scholar
[14]Conway, J. B.. Functions of One Complex Variable II. Springer, New York, 1995.Google Scholar
[15]Domínguez, P.. Connectedness properties of Julia sets of transcendental entire functions. Complex Var. 32 (1997), 199215.Google Scholar
[16]Domínguez, P. and Fagella, N.. Residual Julia sets of rational and transcendental functions. Transcendental Dynamics and Complex Analysis. Eds. Rippon, P. J. and Stallard, G. M.. Cambridge University Press, Cambridge, 2008, pp. 138164.Google Scholar
[17]Domínguez, P. and Sienra, G.. A study of the dynamics of $ \lambda \sin z $. Internat. J. Bifurc. Chaos 12(12) (2002), 28692883.Google Scholar
[18]Garijo, A., Jarque, X. and Moreno Rocha, M.. Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps. Fund. Math. 214 (2011), 135160.Google Scholar
[19]Kisaka, M.. On the connectivity of Julia sets of transcendental entire functions. Ergod. Th. & Dynam. Sys. 18 (1998), 189205.Google Scholar
[20]Mihalache, N.. Julia and John revisited. Fund. Math. 215 (2011), 6786.Google Scholar
[21]Mihaljević-Brandt, H. and Peter, J.. Poincaré functions with spiders’ webs. Proc. Amer. Math. Soc. 140 (2012), 31933205.Google Scholar
[22]Milnor, J.. Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton, NJ, 2006.Google Scholar
[23]Morosawa, S.. Local connectedness of Julia sets for transcendental entire functions. Proc. International Conf. on Nonlinear Analysis and Convex Analysis (November 1999). Eds. Takahashi, W. and Tanaka, T.. World Scientific, Singapore, pp. 266273.Google Scholar
[24]Morosawa, S., Nishimura, Y., Taniguchi, M. and Ueda, T.. Holomorphic Dynamics. Cambridge University Press, Cambridge, 2000.Google Scholar
[25]Newman, M. H. A.. Elements of the Topology of Plane Sets of Points. Cambridge University Press, New York, Reprinted 2008.Google Scholar
[26]Ng, T. W., Zheng, J. H. and Choi, Y. Y.. Residual Julia sets of meromorphic functions. Math. Proc. Cambridge Philos. Soc. 141 (2006), 113126.Google Scholar
[27]Osborne, J. W.. The structure of spider’s web fast escaping sets. Bull. Lond. Math. Soc. to appear, doi:10.1112/blms/bdr112.CrossRefGoogle Scholar
[28]Rippon, P. J. and Stallard, G. M.. Fast escaping points of entire functions. Proc. Lond. Math. Soc. to appear, arXiv:1009.5081v1, doi:10.1093/plms/pds001.Google Scholar
[29]Rippon, P. J. and Stallard, G. M.. Boundaries of escaping Fatou components. Proc. Amer. Math. Soc. 139(8) (2011), 28072820.Google Scholar
[30]Sixsmith, D. J.. Entire functions for which the escaping set is a spider’s web. Math. Proc. Cambridge Philos. Soc. 151 (2011), 551571.Google Scholar
[31]Tan, L. and Yin, Y.. Local connectivity of the Julia set for geometrically finite rational maps. Sci. China, Ser. A (1) 39 (1996), 3947.Google Scholar
[32]Whyburn, G. T.. Analytic Topology. American Mathematical Society Colloqium Publications, New York, 1942.Google Scholar
[33]Whyburn, G. T.. Topological characterization of the Sierpiński curve. Fund. Math. 45 (1958), 320324.Google Scholar