Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T20:46:08.765Z Has data issue: false hasContentIssue false

Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems

Published online by Cambridge University Press:  11 April 2019

LUCAS BACKES
Affiliation:
Departamento de Matemática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91509-900, Porto Alegre, RS, Brazil email [email protected]
MAURICIO POLETTI
Affiliation:
CNRS-Laboratoire de Mathématiques d’Orsay, UMR 8628, Université Paris-Sud 11, Orsay Cedex91405, France email [email protected]
PAULO VARANDAS
Affiliation:
Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, CEP 40170-110Salvador, BA, Brazil email [email protected]
YURI LIMA
Affiliation:
Departamento de Matemática, Centro de Ciências, Campus do Pici, Universidade Federal do Ceará (UFC), Fortaleza – CE, CEP 60455-760, Brazil email [email protected]

Abstract

We prove that generic fiber-bunched and Hölder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a $u$-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched linear cocycles.

Type
Original Article
Copyright
© Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, J. F. and Pinheiro, V.. Gibbs–Markov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction. Adv. Math. 223(5) (2010), 17061730.CrossRefGoogle Scholar
Avila, A. and Viana, M.. Simplicity of Lyapunov spectra: a sufficient criterion. Port. Math. 64 (2007), 311376.CrossRefGoogle Scholar
Backes, L., Brown, A. and Butler, C.. Continuity of Lyapunov exponents for cocycles with invariant holonomies. J. Mod. Dyn. 12 (2018), 223260.CrossRefGoogle Scholar
Backes, L. and Poletti, M.. Continuity of Lyapunov exponents is equivalent to continuity of Oseledets subspaces. Stoch. Dyn. 17 (2017), 1750047.CrossRefGoogle Scholar
Barreira, L. and Pesin, Y.. Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge University Press, New York, 2007.CrossRefGoogle Scholar
Ben Ovadia, S.. Symbolic dynamics for non uniformly hyperbolic diffeomorphisms of compact smooth manifolds. J. Mod. Dynam. 13 (2018), 43113.CrossRefGoogle Scholar
Bessa, M.. Dynamics of generic multidimensional linear differential systems. Adv. Nonlinear Stud. 8 (2008), 191211.CrossRefGoogle Scholar
Bessa, M., Bochi, J., Cambraínha, M., Matheus, C., Varandas, P. and Xu, D.. Positivity of the top Lyapunov exponent for cocycles on semisimple Lie groups over hyperbolic bases. Bull. Brazil. Math. Soc. 49(1) (2018), 7387.CrossRefGoogle Scholar
Bessa, M. and Varandas, P.. Trivial and simple spectrum for SL(2, ℝ) cocycles with free base and fiber dynamics. Acta Math. Sin. 31(7) (2015), 11131122.CrossRefGoogle Scholar
Bochi, J.. Genericity of zero Lyapunov exponents. Ergod. Th. & Dynam. Sys. 22 (2002), 16671696.CrossRefGoogle Scholar
Bonatti, C., Díaz, L. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity (Encyclopaedia of Mathematical Sciences, 102) . Springer, Berlin, 2005.Google Scholar
Bonatti, C., Gomez-Mont, X. and Viana, M.. Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 579624.CrossRefGoogle Scholar
Bonatti, C. and Viana, M.. Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergod. Th. & Dynam. Sys. 24 (2004), 12951330.CrossRefGoogle Scholar
Bowen, R.. Equilibrium States and Ergodic Theory of Anosov Diffeomorphism (Lecture Notes in Mathematics, 470) . Springer, Berlin, 1975.CrossRefGoogle Scholar
Bowen, R.. On Axiom A Diffeomorphisms (Regional Conference Series in Mathematics, 35) . American Mathematical Society, Providence, RI, 1978.Google Scholar
Duarte, P. and Klein, S.. Lyapunov Exponents of Linear Cocycles: Continuity Via Large Deviations (Atlantis Studies in Dynamical Systems, 3) . Atlantis Press, Paris, 2016.CrossRefGoogle Scholar
Furstenberg, H.. Non-commuting random products. Trans. Amer. Math. Soc. 108 (1963), 377428.CrossRefGoogle Scholar
Gol’dsheid, I. Ya. and Margulis, G. A.. Lyapunov indices of a product of random matrices. Uspekhi Mat. Nauk 44 (1989), 1360.Google Scholar
Guivarc’h, Y. and Raugi, A.. Products of random matrices: convergence theorems. Contemp. Math. 50 (1986), 3154.CrossRefGoogle Scholar
Ledrappier, F.. Propriétés ergodiques des mesures de Sinaï. Publ. Math. Inst. Hautes Études Sci. 59 (1984), 163188.CrossRefGoogle Scholar
Ledrappier, F. and Strelcyn, J.-M.. A proof of the estimation from below in Pesin’s entropy formula. Ergod. Th. & Dynam. Sys. 2 (1982), 203219.CrossRefGoogle Scholar
Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122(3) (1985), 509539.CrossRefGoogle Scholar
Lima, Y. and Matheus, C.. Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities. Ann. Sci. Éc. Norm. Supér. 51(1) (2018), 138.CrossRefGoogle Scholar
Lima, Y. and Sarig, O.. Symbolic dynamics for three dimensional flows with positive topological entropy. J. Eur. Math. Soc. 21(1) (2019), 199256.CrossRefGoogle Scholar
Matheus, C., Möller, M. and Yoccoz, J.-C.. A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces. Invent. Math. 202(1) (2015), 333425.CrossRefGoogle Scholar
Newhouse, S.. Nondensity of Axiom A(a) on S 2 . Global Analysis (Proceedings of Symposia in Pure Mathematics, XIV) . American Mathematical Society, Berkeley, 1970, pp. 191202.CrossRefGoogle Scholar
Oseledets, V. I.. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197231.Google Scholar
Pesin, Ya. and Sinai, Ya.. Gibbs measures for partially hyperbolic attractors. Ergod. Th. & Dynam. Sys. 3–4 (1983), 417438.Google Scholar
Poletti, M.. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete Contin. Dynam. Syst. 38(10) (2018), 51635188.CrossRefGoogle Scholar
Poletti, M. and Viana, M.. Simple Lyapunov spectrum for certain linear cocycles over partially hyperbolic maps. Preprint, 2016, arXiv:1610.05294.Google Scholar
Pugh, C. and Shub, M.. Ergodic attractors. Trans. Amer. Math. Soc. 312 (1989), 154.CrossRefGoogle Scholar
Sarig, O.. Symbolic dynamics for surface diffeomorphisms with positive entropy. J. Amer. Math. Soc. 26 (2013), 341426.CrossRefGoogle Scholar
Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817.CrossRefGoogle Scholar
Viana, M.. Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Ann. of Math. (2) 167 (2008), 643680.CrossRefGoogle Scholar
Viana, M.. Lectures on Lyapunov Exponents. Cambridge University Press, Cambridge, 2014.CrossRefGoogle Scholar
Viana, M. and Oliveira, K.. Foundations of Ergodic Theory. Cambridge University Press, Cambridge, 2015.Google Scholar