Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T20:34:06.607Z Has data issue: false hasContentIssue false

Simple C*-crossed products with a unique trace

Published online by Cambridge University Press:  19 September 2008

Erik Bédos
Affiliation:
Department of Mathematics, University of Oslo, P.b. 1053, 0316 Oslo, Norway

Abstract

Let (α, u) denote a cocycle-crossed action of a discrete group G on a unital C*-algebra A, and B = C*r (A, G, α, u) the associated reduced (twisted) C*-crossed product. We discuss the following problem: when is B a simple C*-algebra with a unique trace? To this aim, we introduce the concept of tracially properly outerness of actions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Arv1]Arveson, W.. C*-algebras and numerical linear algebra. J. Funct. Anal. 122 (1994), 333360.CrossRefGoogle Scholar
[Arv2]Arveson, W.. Improper filtrations for C*-algebras: Spectra of unilateral tridiagonal operators. Acta Sci. Math. (Szeged) 57 (1993), 1124.Google Scholar
[AS]Archbold, R. J. and Spielberg, J. S.. Topologically free actions and ideals in discrete C*-dynamical systems. Proc. Edinburgh Math. Soc. Ser. II 37 (1994), 119124.CrossRefGoogle Scholar
[Bed1]Bédos, E.. A decomposition theorem for regular extensions of von Neumann algebras. Math. Scand. 68 (1991), 108114.CrossRefGoogle Scholar
[Bed2]Bédos, E.. Discrete groups and simple C*-algebras. Math. Proc. Camb. Phil. Soc. 109 (1991), 521537.CrossRefGoogle Scholar
[Bed3]Bédos, E.. On the uniqueness of the trace on some simple C*-algebras. J. Operator Theory 30 (1993), 149160.Google Scholar
[Bed4]Bédos, E.. On filtrations for C*-algebras. Houston J. Math. 20 (1994), 6374.Google Scholar
[BN]Boca, F. and Nitica, V.. Combinatorial properties of groups and simple C*-algebras with a unique trace. J. Operator Theory 20 (1988), 183196.Google Scholar
[BEK]Bratteli, O., Evans, D. E. and Kishimoto, A.. The Rohlin property for quasi-free automorphisms of the Fermion algebra. Proc. Lond. Math. Soc. 71 (1995), 675694.CrossRefGoogle Scholar
[BKRS]Bratteli, O., Kishimoto, A., Rørdam, M. and Størmer, E.. The crossed product of a UHF algebra by a shift. Ergod. Th. & Dynam. Sys. 13 (1993), 615626.CrossRefGoogle Scholar
[Dix]Dixmier, J.. Les C*-algèbres et Leurs Représentations. 2nd edn. Gauthier-Villars, Paris, 1969.Google Scholar
[Ell]Elliott, G. A.. Some simple C*-algebras constructed as crossed products with discrete outer automorphism groups. Publ. R.I.M.S. 16 (1980), 299311.Google Scholar
[ET]Enomoto, M. and Tamaki, K.. Freely acting automorphisms of abelian C*-algebras. Nagoya Math. J. 56 (1974), 711.CrossRefGoogle Scholar
[Har]de la Harpe, P.. Operator algebras, free groups and other groups. Astérisque 232 (1995), 121153.Google Scholar
[HS]de la Harpe, P. and Skandalis, G.. Powers' property and simple C*-algebras. Math. Ann. 173 (1986), 241250.CrossRefGoogle Scholar
[HR]Hewitt, E. and Ross, K. A.. Abstract harmonic analysis I. Springer, Berlin and New York, 1963.Google Scholar
[KR]Kadison, R. V. and Ringrose, J. R.. Fundamentals of the theory of operator algebras. Vol. II. Pure Appl. Math. 100 II. Acádemic, New York, 1986.Google Scholar
[Kal]Kallman, R. R.. A generalization of free action. Duke Math. J. 36 (1969), 781789.CrossRefGoogle Scholar
[Kis]Kishimoto, A.. Outer automorphisms and reduced crossed products of simple C*-algebras. Comm. Math. Phys. 81 (1981), 429435.CrossRefGoogle Scholar
[KTT]Kawamura, S., Takemoto, H. and Tomiyama, J.. States extensions in transformation group C*-algebras. Acta. Sci. Math. 54 (1990), 191200.Google Scholar
[KT]Kawamura, S. and Tomiyama, J.. Properties of topological dynamical systems and corresponding C* -algebras. Tokyo J. Math. 13 (1990), 251257.CrossRefGoogle Scholar
[Lon]Longo, R.. A remark on crossed products of C*-algebras. J. Lond. Math. Soc. 23 (1981), 531533.CrossRefGoogle Scholar
[Loo]Loomis, L. H.. An introduction to abstract harmonic analysis. Van Nostrand, New York, 1953.Google Scholar
[Mur]Murphys, G. J.. C*-algebras and operator theory. Academic, London and New York, 1990.Google Scholar
[OP]Olesen, D. and Pedersen, G. K.. Applications of the Connes spectrum to C*-dynamical systems III. J. Fund. Anal. 45 (1982), 357390.CrossRefGoogle Scholar
[Pac]Packer, J.. Twisted group C*-algebras corresponding to nilpotent discrete groups. Math. Scand. 64 (1989), 109122.CrossRefGoogle Scholar
[PR]Packer, J. and Raeburn, I.. Twisted crossed products of C*-algebras. Math. Proc. Cam. Phil. Soc. 106 (1989), 293311.CrossRefGoogle Scholar
[Ped]Pedersen, G. K.. C*-algebras and their automorphism groups (LMS Monographs 14). Academic, London and New York, 1979.Google Scholar
[Pow]Powers, R. T.. Simplicity of the C*-algebra associated with the free group on two generators. Duke Math. J. 42 (1975), 151156.CrossRefGoogle Scholar
[Str]Stratila, S.. Modular theory in operator algebras. Editira Academici-Abacus Press, Bucharest, 1981.Google Scholar
[Tak]Takesaki, M.. Theory of operator algebras I. Springer, New York, 1979.CrossRefGoogle Scholar
[Tom]Tomiyama, J.. Invitation to C*-algebras and topological dynamics. World Scientific, Singapore, 1987.CrossRefGoogle Scholar
[Z-M]Zeller-Meier, G.. Produits croisés d'une C*-algèbre par un groupe d'automorphismes. J. Math. Pures Appl. 47 (1968), 101239.Google Scholar