Published online by Cambridge University Press: 19 September 2016
We prove that for any set $E\subseteq \mathbb{Z}$ with upper Banach density $d^{\ast }(E)>0$, the set ‘of cubic configurations’ in $E$ is large in the following sense: for any $k\in \mathbb{N}$ and any $\unicode[STIX]{x1D700}>0$, the set