Hostname: page-component-6bf8c574d5-r8w4l Total loading time: 0 Render date: 2025-03-03T21:08:19.802Z Has data issue: false hasContentIssue false

Semisimple random walks on the torus

Published online by Cambridge University Press:  03 March 2025

WEIKUN HE
Affiliation:
Institute of Mathematics, Academy of Mathematics and System Science, CAS, Zhongguancun East Road 55, Beijing 100190, P. R. China (e-mail: [email protected])
NICOLAS DE SAXCÉ*
Affiliation:
CNRS – Université Sorbonne Paris Nord, LAGA, 93430 Villetaneuse, France

Abstract

We study linear random walks on the torus and show a quantitative equidistribution statement, under the assumption that the Zariski closure of the acting group is semisimple.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoun, R.. Random subgroups of linear groups are free. Duke Math. J. 160(1) (2011), 117173.CrossRefGoogle Scholar
Bénard, T.. Equidistribution of mass for random processes on finite-volume spaces. Israel J. Math. 255(1) (2023), 417422.CrossRefGoogle Scholar
Bénard, T. and He, W.. Multislicing and effective equidistribution for random walks on some homogeneous spaces. Preprint, 2024, arXiv:2409.03300.Google Scholar
Benoist, Y. and Quint, J.-F.. Mesures stationnaires et fermés invariants des espaces homogènes. Ann. of Math. (2) 174(2) (2011), 11111162.CrossRefGoogle Scholar
Benoist, Y. and Quint, J.-F.. Random walks on finite volume homogeneous spaces. Invent. Math. 187(1) (2012), 3759.CrossRefGoogle Scholar
Benoist, Y. and Quint, J.-F.. Stationary measures and invariant subsets of homogeneous spaces (II). J. Amer. Math. Soc. 26(3) (2013), 659734.CrossRefGoogle Scholar
Benoist, Y. and Quint, J.-F.. Stationary measures and invariant subsets of homogeneous spaces (III). Ann. of Math. (2) 178(3) (2013), 10171059.CrossRefGoogle Scholar
Benoist, Y. and Quint, J.-F.. Random Walks on Reductive Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 62). Springer, Cham, 2016.CrossRefGoogle Scholar
Bougerol, P. and Lacroix, J.. Products of Random Matrices with Applications to Schrödinger Operators (Progress in Probability and Statistics, 8). Birkhäuser, Boston, MA, 1985.CrossRefGoogle Scholar
Bourgain, J.. On the Erdős–Volkmann and Katz–Tao ring conjectures. Geom. Funct. Anal. 13(2) (2003), 334365.CrossRefGoogle Scholar
Bourgain, J.. The discretized sum-product and projection theorems. J. Anal. Math. 112 (2010), 193236.CrossRefGoogle Scholar
Bourgain, J., Furman, A., Lindenstrauss, E. and Mozes, S.. Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus. J. Amer. Math. Soc. 24(1) (2011), 231280.CrossRefGoogle Scholar
Bourgain, J. and Gamburd, A.. On the spectral gap for finitely-generated subgroups of $\mathrm{SU}(2)$ . Invent. Math. 171(1) (2008), 83121.CrossRefGoogle Scholar
Bourgain, J. and Gamburd, A.. Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$ . Ann. of Math. (2) 167(2) (2008), 625642.CrossRefGoogle Scholar
Bourgain, J., Glibichuk, A. A. and Konyagin, S. V.. Estimates for the number of sums and products and for exponential sums in fields of prime order. J. Lond. Math. Soc. (2) 73(2) (2006), 380398.CrossRefGoogle Scholar
Bourgain, J. and Varjú, P. P.. Expansion in SLd(Z/qZ),q arbitrary. Invent. Math. 188(1) (2012), 151173.CrossRefGoogle Scholar
Boyer, J.-B.. On the affine random walk on the torus. Preprint, 2017, arXiv:1702.08387.Google Scholar
Erdős, P. and Szemerédi, E.. On sums and products of integers. Studies in Pure Mathematics: To the Memory of Paul Turán (Ed. Erdős, P., Alpár, L., Halász, G. and Sárközy, A.). Birkhäuser, Basel, 1983, pp. 213218.CrossRefGoogle Scholar
Eskin, A. and Margulis, G.. Recurrence properties of random walks on finite volume homogeneous manifolds. Random Walks and Geometry. Proceedings of a Workshop at the Erwin Schrödinger Institute, Vienna, June 18–July 13, 2001. de Gruyter, Berlin, 2004, pp. 431444; in collaboration with K. Schmidt and W. Woess; Collected Papers.Google Scholar
Falconer, K. J.. Hausdorff dimension and the exceptional set of projections. Mathematika 29 (1982), 109115.CrossRefGoogle Scholar
Furstenberg, H.. Noncommuting random products. Trans. Amer. Math. Soc. 108 (1963), 377428.CrossRefGoogle Scholar
Guivarc’h, Y. and Starkov, A. N.. Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms. Ergod. Th. & Dynam. Sys. 24(3) (2004), 767802.CrossRefGoogle Scholar
He, W.. Discretized sum-product estimates in matrix algebras. J. Anal. Math. 139(2) (2019), 637676.CrossRefGoogle Scholar
He, W. and de Saxcé, N.. Sum-product for real Lie groups. J. Eur. Math. Soc. (JEMS) 23(6) (2021), 21272151.CrossRefGoogle Scholar
He, W. and de Saxcé, N.. Linear random walks on the torus. Duke Math. J. 171(5) (2022), 10611133.CrossRefGoogle Scholar
He, W. and de Saxcé, N.. Trou spectral dans les groupes simples. Enseign. Math. 70(3/4) (2024), 425477.CrossRefGoogle Scholar
He, W., Lakrec, T. and Lindenstrauss, E.. Affine random walks on the torus. Int. Math. Res. Not. IMRN 2022(11) (2021), rnaa322.Google Scholar
He, W., Lakrec, T. and Lindenstrauss, E.. Equidistribution of affine random walks on some nilmanifolds. Analysis at Large. Dedicated to the Life and Work of Jean Bourgain. Ed. A. Avila, M. Th. Rassias and Y. Sinai. Springer, Cham, 2022, pp. 131171.CrossRefGoogle Scholar
Kim, W.. Effective equidistribution of expanding translates in the space of affine lattices. Duke Math. J. 173 (2024), 33173375.CrossRefGoogle Scholar
Le Page, E.. Théorèmes limites pour les produits de matrices aléatoires. Probability Measures on Groups (Oberwolfach, 1981) (Lecture Notes in Mathematics, 928). Ed. H. Heyer. Springer, Berlin–New York, 1982, pp. 258303.CrossRefGoogle Scholar
Li, J.. Discretized sum-product and Fourier decay in ${\mathbb{R}}^n$ . J. Anal. Math. 143(2) (2021), 763800.CrossRefGoogle Scholar
Lindenstrauss, E. and Mohammadi, A.. Polynomial effective density in quotients of ${\mathbb{H}}^3$ and ${\mathbb{H}}^2\times {\mathbb{H}}^2$ . Invent. Math. 231(3) (2023), 11411237.CrossRefGoogle Scholar
Lindenstrauss, E., Mohammadi, A. and Wang, Z.. Effective equidistribution for some one parameter unipotent flows. Preprint, 2022, arXiv:2211.11099.Google Scholar
Muchnik, R.. Semigroup actions on ${T}^n$ . Geom. Dedicata 110 (2005), 147.CrossRefGoogle Scholar
Salehi Golsefidy, A. and Varjú, P. P.. Expansion in perfect groups. Geom. Funct. Anal. 22(6) (2012), 18321891.CrossRefGoogle Scholar
Schmidt, W. M.. Diophantine Approximation, Vol. 785. Springer, Cham, 1980.Google Scholar
Tao, T.. Product set estimates for non-commutative groups. Combinatorica 28(5) (2008), 547594.CrossRefGoogle Scholar
Tao, T. and Vu, V. H.. Additive Combinatorics (Cambridge Studies in Advanced Mathematics, 105). Cambridge University Press, Cambridge, 2010.Google Scholar
Van der Waerden, B. L.. Modern Algebra. Volume II. Based in Part on Lectures by E. Artin and E. Noether. Frederick Ungar Publishing Co., New York, 1950; translation from the 3rd German edition.Google Scholar
Yang, L.. Effective version of Ratner’s equidistribution theorem for $\mathrm{SL}_3(\mathbb{R})$ . Ann. of Math., to appear. Preprint 2024, arXiv:2208.02525.Google Scholar