Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T15:49:01.239Z Has data issue: false hasContentIssue false

Rotation shadowing properties of circle and annulus maps

Published online by Cambridge University Press:  19 September 2008

Marcy Barge
Affiliation:
Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
Richard Swanson
Affiliation:
Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define the notions of the pseudo-rotation set and rotation shadowing of pseudo-orbits for endomorphisms of the circle and for homeomorphisms of the annulus. The results include: the rotation shadowing property holds for all endomorphisms of the circle; the pseudo-rotation set equals the closure of the rotation set; the closure of the rotation set varies upper-semicontinuously.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

REFERENCES

[Bi]Birkhoff, G. D.. Sur l'existence de regions d'instabilite en dynamique. Ann. Inst. H. Poincaré 2 (also Collected Math. Papers) (1932).Google Scholar
[Bd]Boyland, P.. Rotation Sets and Morse Decompositions in Twist Maps. Reprint (1986).Google Scholar
[B-M-P-T]Bamon, R. et al. Rotation intervals of endomorphisms of the circle. Ergod. Th. & Dynam. Sys. 4 (1984), 493499.CrossRefGoogle Scholar
[Bo]Bowen, R.. On axiom A diffeomorphisms. CBMS Series No. 35Amer. Math. Soc. (1978).Google Scholar
[Ch]Choquet, G.. Lectures on Analysis, Vol. 1, W. A. Benjamin: New York, 1969.Google Scholar
[D-G-S]Denker, M. et al. Ergodic Theory of Compact Spaces. Lecture Notes in Mathematics, Vol. 527, Springer-Verlag: New York, 1976.CrossRefGoogle Scholar
[F]Franks, J.. Recurrence and fixed points of surface homeomorphisms. To appear in Ergod. Th. & Dynam. Sys.Google Scholar
[Ha]Hall, G. R.. A topological version of a theorem of Mather on twist maps. Ergod. Th. & Dynam. Sys. 4 (1984), 585603.CrossRefGoogle Scholar
[He]Herman, M.. Sur les courbes invariantes par les difféomorphismes de l'anneau. Astérisque 103104 (1983).Google Scholar
[I]Ito, R.. Rotation sets are closed. Math. Proc. Camb. Phil. Soc. 89 (1981), 107111.CrossRefGoogle Scholar
[K]Katok, A.. Some remarks on the Birkhoff and Mather Twist Theorems. Ergod. Th. & Dynam. Sys. 2 (1982), 183194.CrossRefGoogle Scholar
[Ma]Mather, J.. Non-existence of invariant circles. Ergod. Th. & Dynam. Sys. 4 (1984), 301309.CrossRefGoogle Scholar
[N-P-T]Newhouse, S. et al. Bifurcations and stability of families of diffeomorphisms. IHES Publ. Math. 57 (1983), 571.CrossRefGoogle Scholar
[R]Rudin, W.. Functional Analysis, McGraw-Hill: New York, 1973.Google Scholar