Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T00:37:34.974Z Has data issue: false hasContentIssue false

Rich representations and superrigidity

Published online by Cambridge University Press:  27 January 2025

GREGORIO BALDI
Affiliation:
CNRS, IMJ-PRG, Sorbonne Université, Paris 75005, France (e-mail: [email protected])
NICHOLAS MILLER
Affiliation:
Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA (e-mail: [email protected])
MATTHEW STOVER*
Affiliation:
Department of Mathematics, Temple University, Philadelphia, PA 19147, USA
EMMANUEL ULLMO
Affiliation:
I.H.E.S., Bures-sur-Yvette 91440, France (e-mail: [email protected])

Abstract

We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bader, U., Fisher, D., Miller, N. and Stover, M.. Arithmeticity, superrigidity, and totally geodesic submanifolds. Ann. of Math. (2) 193(3) (2021), 837861.CrossRefGoogle Scholar
Bader, U., Fisher, D., Miller, N. and Stover, M.. Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds. Invent. Math. 233(1) (2023), 169222.CrossRefGoogle Scholar
Bader, U. and Furman, A.. An extension of Margulis’s superrigidity theorem. Dynamics, Geometry, Number Theory: The Impact of Margulis on Modern Mathematics. Ed. D. Fisher, D. Kleinbock and G. Soifer. The University of Chicago Press, Chicago, IL, 2022, pp. 4765.Google Scholar
Baker, M. and DeMarco, L.. Preperiodic points and unlikely intersections. Duke Math. J. 159(1) (2011), 129.CrossRefGoogle Scholar
Baldi, G.. On a conjecture of Buium and Poonen. Ann. Inst. Fourier (Grenoble) 70(2) (2020), 457477.CrossRefGoogle Scholar
Baldi, G., Klingler, B. and Ullmo, E.. Non-density of the exceptional components of the Noether–Lefschetz locus. Int. Math. Res. Not. IMRN 2024(21) (2024), 1364213650.CrossRefGoogle Scholar
Baldi, G., Klingler, B. and Ullmo, E.. On the distribution of the Hodge locus. Invent. Math. 235(2) (2024), 441487.CrossRefGoogle Scholar
Baldi, G. and Ullmo, E.. Special subvarieties of non-arithmetic ball quotients and Hodge theory. Ann. of Math. (2) 197(1) (2023), 159220.CrossRefGoogle Scholar
Baldi, G. and Urbanik, D.. Effective atypical intersections and applications to orbit closures. Preprint, 2024, arXiv:2406.16628.Google Scholar
Besson, G., Courtois, G. and Gallot, S.. Lemme de Schwarz réel et applications géométriques. Acta Math. 183(2) (1999), 145169.CrossRefGoogle Scholar
Borel, A.. Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Differential Geom. 6 (1972), 543560.Google Scholar
Buium, A. and Poonen, B.. Independence of points on elliptic curves arising from special points on modular and Shimura curves. I. Global results. Duke Math. J. 147(1) (2009), 181191.CrossRefGoogle Scholar
Cao, H.-D. and Mok, N.. Holomorphic immersions between compact hyperbolic space forms. Invent. Math. 100(1) (1990), 4961.CrossRefGoogle Scholar
Corlette, K.. Flat $G$ -bundles with canonical metrics. J. Differential Geom. 28(3) (1988), 361382.CrossRefGoogle Scholar
Daw, C. and Ren, J.. Applications of the hyperbolic Ax-Schanuel conjecture. Compos. Math. 154(9) (2018), 18431888.CrossRefGoogle Scholar
Deligne, P.. Théorie de Hodge. II. Publ. Math. Inst. Hautes Études Sci. 40 (1971), 557.CrossRefGoogle Scholar
Deligne, P., Milne, J. S., Ogus, A. and Shih, K.-Y.. Hodge Cycles, Motives, and Shimura Varieties (Lecture Notes in Mathematics, 900). Springer, Cham, 1982.CrossRefGoogle Scholar
Esnault, H. and Groechenig, M.. Cohomologically rigid local systems and integrality. Selecta Math. (N.S.) 24(5) (2018), 42794292.CrossRefGoogle Scholar
Eterović, S. and Scanlon, T.. Likely intersections. Preprint, 2023, arXiv:2211.10592.Google Scholar
Fisher, D.. Superrigidity, arithmeticity, normal subgroups: results, ramifications, and directions. Dynamics, Geometry, Number Theory: The Impact of Margulis on Modern Mathematics. Ed. D. Fisher, D. Kleinbock and G. Soifer. University of Chicago Press, Chicago, IL, 2022, pp. 946.CrossRefGoogle Scholar
Goldman, W. M. and Millson, J. J.. Local rigidity of discrete groups acting on complex hyperbolic space. Invent. Math. 88(3) (1987), 495520.CrossRefGoogle Scholar
Gromov, M. and Schoen, R.. Harmonic maps into singular spaces and $p$ -adic superrigidity for lattices in groups of rank one. Publ. Math. Inst. Hautes Études Sci. 76 (1992), 165246.CrossRefGoogle Scholar
Johnson, D. and Millson, J. J.. Deformation spaces associated to compact hyperbolic manifolds. Discrete Groups in Geometry and Analysis: Papers in Honor of G. D. Mostow 60th Birthday. Ed. R. Howe. Birkhäuser Boston, Inc., Boston, MA, 1987, pp. 48106.CrossRefGoogle Scholar
Khelifa, N. and Urbanik, D.. Existence and density of typical Hodge loci. Preprint, 2024, arXiv:2303.16179.CrossRefGoogle Scholar
Kim, D. and Oh, H.. Rigidity of Kleinian groups via self-joinings: measure theoretic criterion. Preprint, 2023, arXiv:2302.03552.CrossRefGoogle Scholar
Kim, D. and Oh, H.. Rigidity of Kleinian groups via self-joinings. Invent. Math. 234(3) (2023), 937948.CrossRefGoogle Scholar
Klingler, B.. Local rigidity for complex hyperbolic lattices and Hodge theory. Invent. Math. 184(3) (2011), 455498.CrossRefGoogle Scholar
Klingler, B., Ullmo, E. and Yafaev, A.. Bi-algebraic geometry and the André–Oort conjecture. Algebraic Geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics, 97). Ed. T. de Fernex, B. Hassett, M. Mustaţă, M. Olsson, M. Popa and R. Thomas. American Mathematical Society, Providence, RI, 2018, pp. 319359.Google Scholar
Koziarz, V. and Maubon, J.. Maximal representations of uniform complex hyperbolic lattices. Ann. of Math. (2) 185(2) (2017), 493540.CrossRefGoogle Scholar
Koziarz, V. and Maubon, J.. Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces. Bull. Soc. Math. France 146(4) (2018), 613631.CrossRefGoogle Scholar
Margulis, G. A.. Discrete Subgroups of Semisimple Lie Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17). Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
Mok, N., Siu, Y. T. and Yeung, S.-K.. Geometric superrigidity. Invent. Math. 113(1) (1993), 5783.CrossRefGoogle Scholar
Möller, M. and Toledo, D.. Bounded negativity of self-intersection numbers of Shimura curves in Shimura surfaces. Algebra Number Theory 9(4) (2015), 897912.CrossRefGoogle Scholar
Mostow, G. D.. On a remarkable class of polyhedra in complex hyperbolic space. Pacific J. Math. 86(1) (1980), 171276.CrossRefGoogle Scholar
Mumford, D.. Abelian Varieties (Tata Institute of Fundamental Research, Studia Mathematica, 5). Oxford University Press, London, 1970.Google Scholar
Pila, J., Shankar, A. N., Tsimerman, J., Esnault, H. and Groechenig, M.. Canonical heights on Shimura varieties and the André–Oort conjecture. Preprint, 2022, arXiv:2109.08788.Google Scholar
Prasad, G. and Rapinchuk, A. S.. Generic elements of a Zariski-dense subgroup form an open subset. Trans. Moscow Math. Soc. 78 (2017), 299314.CrossRefGoogle Scholar
Ratner, M.. On Raghunathan’s measure conjecture. Ann. of Math. (2) 134(3) (1991), 545607.CrossRefGoogle Scholar
Shalom, Y.. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Ann. of Math. (2) 152(1) (2000), 113182.CrossRefGoogle Scholar
Simpson, C. T.. The ubiquity of variations of Hodge structure. Complex Geometry and Lie Theory. Proceedings of a Symposium (Sundance, UT, USA, May 26–30, 1989). Ed. J. Carlson, C. H. Clemens and D. Morrison. American Mathematical Society, Providence, RI, 1991, pp. 329348.CrossRefGoogle Scholar
Siu, Y.-T.. Some recent results in complex manifold theory related to vanishing theorems for the semipositive case. Arbeitstagung Bonn, 1984: Proceedings of the Meeting held by the Max-Planck-Institut für Mathematik, Bonn, June 15–22, 1984 (Lecture Notes in Mathematics, 111). Ed. F. Hirzebruch, J. Schwermer and S. Suter. Springer, Berlin, 1985, pp. 169192.CrossRefGoogle Scholar
Tayou, S. and Tholozan, N.. Equidistribution of Hodge loci. II. Compos. Math. 159(1) (2023), 152.CrossRefGoogle Scholar
Toledo, D.. Maps between complex hyperbolic surfaces. Geom. Dedicata 97 (2003), 115128.CrossRefGoogle Scholar
Ullmo, E. and Yafaev, A.. Algebraic flows on Shimura varieties. Manuscripta Math. 155(3–4) (2018), 355367.CrossRefGoogle Scholar
Yuan, S. and Zhang, S.. Calabi–Yau theorem and algebraic dynamics. Preprint, 2010.Google Scholar