Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T03:56:52.120Z Has data issue: false hasContentIssue false

Reduction of dynatomic curves

Published online by Cambridge University Press:  25 January 2018

JOHN R. DOYLE
Affiliation:
University of Rochester, Rochester, NY 14627, USA email [email protected]
HOLLY KRIEGER
Affiliation:
University of Cambridge, Cambridge, CB3 0WB, UK email [email protected]
ANDREW OBUS
Affiliation:
University of Virginia, Charlottesville, VA 22904, USA email [email protected]
RACHEL PRIES
Affiliation:
Colorado State University, Fort Collins, CO 80523, USA email [email protected]
SIMON RUBINSTEIN-SALZEDO
Affiliation:
Euler Circle, Palo Alto, CA 94306, USA email [email protected]
LLOYD WEST
Affiliation:
University of Virginia, Charlottesville, VA 22904, USA email [email protected]

Abstract

In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain one-dimensional families ${\mathcal{F}}$ of polynomial maps, such as the family $f_{c}(x)=x^{m}+c$, where $m\geq 2$. We do this by making use of the dynatomic modular curves $Y_{1}(n)$ (respectively $Y_{0}(n)$) which parametrize maps $f$ in ${\mathcal{F}}$ together with a point (respectively orbit) of period $n$ for $f$. The key point in our strategy is to study the set of primes $p$ for which the reduction of $Y_{1}(n)$ modulo $p$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $n$, a discriminant $D_{n}$ whose list of prime factors contains all the primes of bad reduction for $Y_{1}(n)$. In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $p$ dividing $D_{n}$: one guarantees that $p$ is in fact a prime of bad reduction for $Y_{1}(n)$, yet this same criterion implies that $Y_{0}(n)$ is geometrically irreducible. The other guarantees that the reduction of $Y_{1}(n)$ modulo $p$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, and Stoll by giving new examples of good reduction of $Y_{1}(n)$ for several primes dividing $D_{n}$ when $n=7,8,11$, and $f_{c}(x)=x^{2}+c$. The proofs involve a blend of arithmetic and complex dynamics, reduction theory for curves, ramification theory, and the combinatorics of the Mandelbrot set.

Type
Original Article
Copyright
© Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchard, P., Devaney, R. L. and Keen, L.. The dynamics of complex polynomials and automorphisms of the shift. Invent. Math. 104(3) (1991), 545580.Google Scholar
Benedetto, R. L.. Heights and preperiodic points of polynomials over function fields. Int. Math. Res. Not. IMRN 62 (2005), 38553866.Google Scholar
Buff, X. and Lei, T.. The quadratic dynatomic curves are smooth and irreducible. Frontiers in Complex Dynamics (Princeton Mathematical Series, 51) . Princeton University Press, Princeton, NJ, 2014, pp. 4972.Google Scholar
Bousch, T.. Sur quelques problèmes de dynamique holomorphe. PhD Thesis, Université de Paris-Sud, Centre d’Orsay, 1992.Google Scholar
Bouw, I. I.. Covers of the affine line in positive characteristic with prescribed ramification. WIN—Women in Numbers (Fields Institute Communications, 60) . American Mathematical Society, Providence, RI, 2011, pp. 193200.Google Scholar
Branner, B.. The Mandelbrot set. Chaos and Fractals (Providence, RI, 1988) (Proceedings of Symposia in Pure Mathematics, 39) . American Mathematical Society, Providence, RI, 1989, pp. 75105.Google Scholar
Bruin, H. and Schleicher, D.. Admissibility of kneading sequences and structure of Hubbard trees for quadratic polynomials. J. Lond. Math. Soc. (2) 78(2) (2008), 502522.Google Scholar
Canci, J. K.. Preperiodic points for rational functions defined over a rational function field of characteristic zero. New York J. Math. 21 (2015), 12951310.Google Scholar
Douady, A. and Hubbard, J. H.. Étude dynamique des polynômes complexes. Partie I (Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], 84) . Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.Google Scholar
Doyle, J. R. and Poonen, B.. Gonality of dynatomic curves and strong uniform boundedness of preperiodic points. Preprint, 2017, arXiv:1711.04233.Google Scholar
Flynn, E. V., Poonen, B. and Schaefer, E. F.. Cycles of quadratic polynomials and rational points on a genus-2 curve. Duke Math. J. 90(3) (1997), 435463.Google Scholar
Fulton, W.. Hurwitz schemes and irreducibility of moduli of algebraic curves. Ann. of Math. (2) 90 (1969), 542575.Google Scholar
Green, B. and Matignon, M.. Liftings of Galois covers of smooth curves. Compos. Math. 113(3) (1998), 237272.Google Scholar
Gao, Y. and Ou, Y.. The dynatomic periodic curves for polynomial zz d + c are smooth and irreducible. Sci. China Math. 57(6) (2014), 11751192.Google Scholar
Liu, Q.. Algebraic Geometry and Arithmetic Curves (Oxford Graduate Texts in Mathematics, 6) . Oxford University Press, Oxford, 2002, translated from the French by Reinie Erné, Oxford Science Publications.Google Scholar
Liu, Q. and Lorenzini, D.. Models of curves and finite covers. Compos. Math. 118(1) (1999), 61102.Google Scholar
Lau, E. and Schleicher, D.. Internal addresses in the Mandelbrot set and irreducibility of polynomials. SUNY Stony Brook Preprint, 19, 1994.Google Scholar
Mézard, A.. Fundamental group. Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998) (Progress in Mathematics, 187) . Birkhäuser, Basel, 2000, pp. 141155.Google Scholar
Morton, P.. On certain algebraic curves related to polynomial maps. Compos. Math. 103(3) (1996), 319350.Google Scholar
Morton, P.. Arithmetic properties of periodic points of quadratic maps. II. Acta Arith. 87(2) (1998), 89102.Google Scholar
Morton, P.. Galois groups of periodic points. J. Algebra 201(2) (1998), 401428.Google Scholar
Morton, P. and Silverman, J. H.. Rational periodic points of rational functions. Int. Math. Res. Not. IMRN 1994(2) (1994), 97110.Google Scholar
Milnor, J. and Thurston, W.. On iterated maps of the interval. Dynamical Systems (College Park, MD, 1986–87) (Lecture Notes in Mathematics, 1342) . Springer, Berlin, 1988, pp. 465563.Google Scholar
Morton, P. and Vivaldi, F.. Bifurcations and discriminants for polynomial maps. Nonlinearity 8(4) (1995), 571584.Google Scholar
Poonen, B.. Gonality of modular curves in characteristic p . Math. Res. Lett. 14(4) (2007), 691701.Google Scholar
Poonen, B.. Uniform boundedness of rational points and preperiodic points. Preprint, 2012, arXiv:1206.7104.Google Scholar
Raynaud, M.. Revêtements de la droite affine en caractéristique p > 0 et conjecture d’Abhyankar. Invent. Math. 116(1–3) (1994), 425462.+0+et+conjecture+d’Abhyankar.+Invent.+Math.+116(1–3)+(1994),+425–462.>Google Scholar
Schleicher, D.. Rational parameter rays of the Mandelbrot set. Astérisque 261, xiv–xv, 405–443, 2000. Géométrie complexe et systèmes dynamiques (Orsay, 1995).Google Scholar
Revêtements étales et groupe fondamental (SGA 1). Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003. Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960–61], directed by A. Grothendieck, with two papers by M. Raynaud, updated and annotated reprint of the 1971 original [Lecture Notes in Mathematics, 224, Springer, Berlin].Google Scholar
Silverman, J. H.. The Arithmetic of Dynamical Systems (Graduate Texts in Mathematics, 241) . Springer, New York, 2007.Google Scholar
Stoll, M.. Rational 6-cycles under iteration of quadratic polynomials. LMS J. Comput. Math. 11 (2008), 367380.Google Scholar
Szamuely, T.. Galois Groups and Fundamental Groups (Cambridge Studies in Advanced Mathematics, 117) . Cambridge University Press, Cambridge, 2009.Google Scholar
Xarles, X.. Squares in arithmetic progression over number fields. J. Number Theory 132(3) (2012), 379389.Google Scholar