Published online by Cambridge University Press: 11 October 2013
We consider special flows over the rotation by an irrational $\alpha $ under the roof functions of bounded variation without continuous, singular part in the Lebesgue decomposition and sum of jumps not equal to zero. We show that all such flows are weakly mixing. Under the additional assumption that $\alpha $ has bounded partial quotients, we study the weak Ratner property. We establish this property whenever an additional condition (stable under sufficiently small perturbations) on the set of jumps is satisfied. While it is a classical result that the flows under consideration are not mixing, one more condition on the set of jumps turns out to be sufficient to obtain the absence of partial rigidity, hence mild mixing of such flows.