Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T02:56:00.229Z Has data issue: false hasContentIssue false

Random iterations of polynomials of the form $z^2+c_n$: connectedness of Julia sets

Published online by Cambridge University Press:  01 October 1999

RAINER BRÜCK
Affiliation:
Mathematisches Institut, Justus-Liebig-Universität Gießen, Arndtstraße 2, D-35392 Gießen, Germany (e-mail: [email protected]@math.uni-giessen.de)
MATTHIAS BÜGER
Affiliation:
Mathematisches Institut, Justus-Liebig-Universität Gießen, Arndtstraße 2, D-35392 Gießen, Germany (e-mail: [email protected]@math.uni-giessen.de)
STEFAN REITZ
Affiliation:
Langer Weg 4, D-35305 Grünberg, Germany (e-mail: [email protected])

Abstract

For a sequence $(c_n)$ of complex numbers we consider the quadratic polynomials $f_{c_n}(z):=z^2+c_n$ and the sequence $(F_n)$ of iterates $F_n:= f_{c_n} \circ \dotsb \circ f_{c_1}$. The Fatou set $\mathcal{F}_{(c_n)}$ is by definition the set of all $z \in \widehat{\mathbb{C}}$ such that $(F_n)$ is normal in some neighbourhood of $z$, while the complement of $\mathcal{F}_{(c_n)}$ is called the Julia set $\mathcal{J}_{(c_n)}$. The aim of this paper is to study the connectedness of the Julia set $\mathcal{J}_{(c_n)}$ provided that the sequence $(c_n)$ is bounded and randomly chosen. For example, we prove a necessary and sufficient condition for the connectedness of $\mathcal{J}_{(c_n)}$ which implies that $\mathcal{J}_{(c_n)}$ is connected if $|c_n| \le \frac{1}{4}$, while it is almost surely disconnected if $|c_n| \le \delta$ for some $\delta>\frac{1}{4}$.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)