Article contents
The projective fundamental group of a ℤ2-shift
Published online by Cambridge University Press: 14 October 2010
Abstract
We define a new invariant for symbolic ℤ2-actions, the projective fundamental group. This invariant is the limit of an inverse system of groups, each of which is the fundamental group of a space associated with the ℤ2-action. The limit group measures a kind of long-distance order that is manifested along loops in the plane, and roughly speaking bears the same relation to the mixing properties of the ℤ2-action that π1; of a topological space bears to π0. The projective fundamental group is invariant under topological conjugacy. We calculate this invariant for several important examples of ℤ2-actions, and use it to prove non-existence of certain constant-to-one factor maps between two-dimensional subshifts. Subshifts that have the same entropy and periodic point data can have different projective fundamental groups.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1995
References
REFERENCES
- 6
- Cited by