Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T12:38:59.320Z Has data issue: false hasContentIssue false

The Pesin entropy formula for $C^1$ diffeomorphisms with dominated splitting

Published online by Cambridge University Press:  26 February 2014

ELEONORA CATSIGERAS
Affiliation:
Instituto de Matemática y Estadística Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Uruguay email [email protected], [email protected], [email protected]
MARCELO CERMINARA
Affiliation:
Instituto de Matemática y Estadística Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Uruguay email [email protected], [email protected], [email protected]
HEBER ENRICH
Affiliation:
Instituto de Matemática y Estadística Rafael Laguardia (IMERL), Facultad de Ingeniería, Universidad de la República, Uruguay email [email protected], [email protected], [email protected]

Abstract

For any $C^1$ diffeomorphism with dominated splitting, we consider a non-empty set of invariant measures that describes the asymptotic statistics of Lebesgue-almost all orbits. They are the limits of convergent subsequences of averages of the Dirac delta measures supported on those orbits. We prove that the metric entropy of each of these measures is bounded from below by the sum of the Lyapunov exponents on the dominating sub-bundle. As a consequence, if those exponents are non-negative, and if the exponents on the dominated sub-bundle are non-positive, those measures satisfy the Pesin entropy formula.

Type
Research Article
Copyright
© Cambridge University Press, 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdenur, F., Bonatti, C. and Crovisier, S.. Non-uniform hyperbolicity for $C^1$-generic diffeomorphisms. Israel J. Math. 183 (2011), 160.Google Scholar
Avila, A. and Bochi, J.. A generic $C^1$ map has no absolutely continuous invariant probability measure. Nonlinearity 19 (2006), 27172725.CrossRefGoogle Scholar
Barreira, L. and Pesin, Y.. Non-uniform Hyperbolicity: Dynamics of Systems with Non-zero Lyapunov Exponents (Encyclopedia of Mathematics and its Applications, 115). Cambridge University Press, Cambridge, 2007.Google Scholar
Bonatti, C., Crovisier, S. and Shinohara, K.. The $C^{1 + \alpha }$ hypothesis in Pesin theory revisited. Preprint, arXiv 1306.6391v1[math.DS].Google Scholar
Bonatti, C., Díaz, L. and Viana, M.. Dynamics beyond uniform hyperbolicity. A Global Geometric and Probabilistic Perspective (Encyclopaedia of Mathematical Sciences, 102). Springer, Berlin, 2005.Google Scholar
Catsigeras, E. and Enrich, H.. SRB-like measures for $C^0$ dynamics. Bull. Pol. Acad. Sci. Math. 59 (2011), 151164.Google Scholar
Keller, G.. Equilibrium States in Ergodic Theory (London Mathematics Society Student Texts, 42). Cambridge University Press, Cambridge, 1998.Google Scholar
Ledrappier, L. and Strelcyn, J.-M.. A proof of the estimation from below in Pesin’s formula. Ergod. Th. & Dynam. Sys. 2 (1982), 203219.Google Scholar
Ledrappier, L. and Young, L.-S.. The metric entropy of diffeomorphisms—Part I: Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122 (1985), 509539.CrossRefGoogle Scholar
Mañé, R.. A proof of Pesin’s formula. Ergod. Th. & Dynam. Sys. 1 (1981), 95102.CrossRefGoogle Scholar
Mañé, R.. Errata to ‘A proof of Pesin’s formula’. Ergod. Th. & Dynam. Sys. 3 (1983), 159160.CrossRefGoogle Scholar
Pesin, Ya.. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32(4) (1977), 55114.CrossRefGoogle Scholar
Pugh, C.. The $C^{1+\alpha }$ hypothesis in Pesin theory. Publ. Math. Inst. Hautes Études Sci. 59 (1984), 143161.Google Scholar
Qiu, H.. Existence and uniqueness of SRB measure on C1 generic hyperbolic attractors. Commun. Math. Phys. 302 (2011), 345357.Google Scholar
Rohlin, V.. On the fundamental ideas of measure theory. Amer. Math. Soc. Transl. 1 (1962), 152.Google Scholar
Ruelle, D.. An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9 (1978), 8387.Google Scholar
Sun, W. and Tian, X.. Pesin set, closing lemma and shadowing lemma in $C^1$ non-uniformly hyperbolic systems with limit domination. Preprint, 2010, arXiv:1004.0486v1 [math.DS].Google Scholar
Sun, W. and Tian, X.. Dominated splitting and Pesin’s entropy formula. Discrete Contin. Dyn. Syst. 32–4 (2012), 14211434.CrossRefGoogle Scholar
Tahzibi, A.. $C^1$-generic Pesin’s entropy formula. C. R. Acad. Sci. Paris, Ser. I 335 (2002), 10571062.Google Scholar