Published online by Cambridge University Press: 22 August 2012
We show that for a locally free $C^{\infty }$-action of a connected and simply connected nilpotent Lie group on a compact manifold, if every real-valued cocycle is cohomologous to a constant cocycle, then the action is parameter rigid. The converse is true if the action has a dense orbit. Using this, we construct parameter rigid actions of simply connected nilpotent Lie groups whose Lie algebras admit rational structures with graduations. This generalizes the results of dos Santos [Parameter rigid actions of the Heisenberg groups. Ergod. Th. & Dynam. Sys.27(2007), 1719–1735] concerning the Heisenberg groups.