Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T13:25:23.211Z Has data issue: false hasContentIssue false

On normal forms in Hamiltonian dynamics, a new approach to some convergence questions

Published online by Cambridge University Press:  19 September 2008

David Delatte
Affiliation:
Department of Mathematics, University of North Texas, Denton, TX 76203-0116, USA

Abstract

We consider the convergence of solutions to various conjugacy problems occurring in Hamiltonian dynamics. These give rise to nonlinear functional equations which we solve by using a norm well adapted to the problem. The approach provides an alternative to the classical majorization method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A]Anosov, D. V.. Geodesic flows on closed Riemannian manifolds with negative curvature. Tr. Mat. Inst. Steklov. 90 (1967) (Russian); Proc. Steklov Inst. Math. 90 (1967).Google Scholar
[Ar]Arnold, V. I.. Proof of A. N. Kolmogorov's theorem on the presentation of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18: 6 (1963), 85192.Google Scholar
[D]DeLatte, D. A.. Nonstationary normal forms and cocycle invariants. Random and Comp. Dyn. 1: 2 (19921993), 229259.Google Scholar
[H]Hoffman, K.. Banach Spaces of Analytic Functions. Prentice Hall: Englewood Cliffs, NJ, 1962.Google Scholar
[K]Katok, A. B.. Dynamical systems with hyperbolic structure; three papers on dynamical systems. Amer. Math. Soc. Transl. 116 (1981), 125211.Google Scholar
[Ko]Kolmogorov, A. N.. Dokl. Akad. Nauk 98 (1954), 527530 (Russian).Google Scholar
[Ma]Mañé, R.. Ergodic Theory and Differentiable Dynamics. Springer: Berlin, 1987.CrossRefGoogle Scholar
[Me]Meyer, K. R.. The implicit function theorem and analytic differential equations. Springer Lecture Notes in Mathematics, 468 (1974), 191208.CrossRefGoogle Scholar
[M1]Moser, J. K.. The analytic invariants of an area-preserving mapping near a hyperbolic fixed point. Comm. Pure Appl. Math. 9 (1956), 673692.CrossRefGoogle Scholar
[M2]Moser, J. K.. On the generalization of a theorem of Liapunoff. Comm. Pure Appl. Math. 11 (1958), 257275.CrossRefGoogle Scholar
[M3]Moser, J. K.. On invariant curves of area-preserving mappings of the annulus. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. IIa: 1 (1962), 120.Google Scholar
[M4]Moser, J. K.. A rapidly converging iteration method and nonlinear partial differential equations I, II. Ann. Scuola. Norm. Sup. Pisa 320 (1966), 265315. 499–535.Google Scholar
[MW]Moser, J. K. and Webster, S.. Normal forms for real surfaces in ℂ2 near complex tangents and hyperbolic surface transformations. Acta. Math. 150 (1983), 255296.CrossRefGoogle Scholar
[N]Nirenberg, L.. On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa 13 (1959), 148.Google Scholar
[S]Siegel, C. L.. Vereinfachter Beweis eines Satzes von J. Moser. Comm. Pure Appl. Math. 10 (1957), 305309.CrossRefGoogle Scholar
[Sc]Schauder, J.. Das Anfangswertproblem einer quasi linearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen. Fund. Math. 24 (1935), 213246.CrossRefGoogle Scholar
[S-M]Siegel, C. L. and Moser, J. K.. Lectures on Celestial Mechanics. Springer: New York, 1971.CrossRefGoogle Scholar