Article contents
On ergodic foliations
Published online by Cambridge University Press: 19 September 2008
Abstract
We define an ergodic ℤ-foliation and show that it can be realized as a quotient space of the ‘covering space’. The covering space has two actions, T and S, where T is a ℤ-action, S is a map of order two, and S and T skew-commute; that is, STS = T−1. We study the isometry between two foliations via the isomorphism between two bigger group actions in the covering spaces. Properties of an ergodic foliation are studied in a way similar to the study of an ergodic action. We construct a counterexample of a K-automorphism to show that, unlike Bernoulli automorphisms, ℤ-actions do not completely determine ℤ-foliations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1988
References
REFERENCES
- 1
- Cited by