Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T22:16:33.604Z Has data issue: false hasContentIssue false

A non-Borel special alpha-limit set in the square

Published online by Cambridge University Press:  22 July 2021

STEPHEN JACKSON
Affiliation:
Department of Mathematics, University of North Texas, General Academics Building 435, 1155 Union Circle, #311430, Denton, Texas76203-5017, USA (e-mail: [email protected])
BILL MANCE
Affiliation:
Uniwersytet im. Adama Mickiewicza w Poznaniu, Collegium Mathematicum, ul. Umultowska 87, 61-614, Poznań Poland (e-mail: [email protected])
SAMUEL ROTH*
Affiliation:
Mathematical Institute of the Silesian University in Opava, Na Rybničku 1, 74601, Opava, Czech Republic

Abstract

We consider the complexity of special $\alpha $ -limit sets, a kind of backward limit set for non-invertible dynamical systems. We show that these sets are always analytic, but not necessarily Borel, even in the case of a surjective map on the unit square. This answers a question posed by Kolyada, Misiurewicz, and Snoha.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agronsky, S., Bruckner, A., Ceder, J. and Pearson, T.. The structure of $\omega$ -limit sets for continuous functions. Real Anal. Exchange 15(2) (1989/90), 483510.CrossRefGoogle Scholar
Agronsky, S. and Ceder, J.. Each Peano subspace of ${E}^k$ is an ω-limit set. Real Anal. Exchange 17(1) (1991/92), 371378.CrossRefGoogle Scholar
Airey, D., Jackson, S. and Mance, B.. Some complexity results in the theory of normal numbers. Canad. J. Math. doi:10.4153/S0008414X20000723. Published online 28 September 2020.Google Scholar
Balibrea, F., Dvorníková, G., Lampart, M. and Oprocha, P.. On negative limit sets for one-dimensional dynamics. Nonlinear Anal. 75 (2012), 32623267.CrossRefGoogle Scholar
Block, L. S. and Coppel, W. A.. Dynamics in One Dimension (Lecture Notes in Mathematics, 1513). Springer-Verlag, Berlin, 1992.Google Scholar
Bruckner, A. and Smítal, J.. The structure of $\omega$ -limit sets for continuous maps of the interval. Math. Bohem. 117(1) (1992), 4247.CrossRefGoogle Scholar
Conley, C.. Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics, 38). American Mathematical Society, Providence, RI, 1978.CrossRefGoogle Scholar
Coven, E. and Nitecki, Z.. Non-wandering sets of the powers of maps of the interval. Ergod. Th. & Dynam. 1 (1981), 931.CrossRefGoogle Scholar
Cui, H. and Ding, Y.. The $\alpha$ -limit sets of a unimodal map without homtervals. Topology Appl. 157(1) (2010), 2228.CrossRefGoogle Scholar
Foreman, M., Rudolph, D. and Weiss, B.. The conjugacy problem in ergodic theory. Ann. of Math. (2) 173(3) (2011), 15291586.CrossRefGoogle Scholar
Good, C., Meddaugh, J. and Mitchell, J.. Shadowing, internal chain transitivity and $\alpha$ -limit sets. J. Math. Anal. Appl. 491(1) (2020), 124291.CrossRefGoogle Scholar
Guckenheimer, J. and Holmes, P.. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Applied Mathematical Sciences, 42). Springer-Verlag, New York, 1983.CrossRefGoogle Scholar
Hantáková, J. and Roth, S.. On backward attractors of interval maps. Preprint, 2021, arXiv:2007.10883.CrossRefGoogle Scholar
Hero, M.. Special $\alpha$ -limit points for maps of the interval. Proc. Amer. Math. Soc. 116 (1992), 10151022.Google Scholar
Hirsch, M., Smith, H. and Zhao, X.. Chain transitivity, attractivity, and strong repellors for semidynamical systems. J. Dynam. Differential Equations 13(1) (2001), 107131.CrossRefGoogle Scholar
Hjorth, G.. On invariants for measure preserving transformations. Fund. Math. 169(1) (2001), 5184.CrossRefGoogle Scholar
Jiménez López, V. and Smítal, J.. $\omega$ -Limit sets for triangular mappings. Fund. Math. 167(1) (2001), 115.CrossRefGoogle Scholar
Kechris, A.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156). Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
Kolyada, S., Misiurewicz, M. and Snoha, Ľ.. Special $\alpha$ -limit sets. Dynamics: Topology and Numbers (Contemporary Mathematics, 744). American Mathematical Society, Providence, RI, 2020, pp. 157173.CrossRefGoogle Scholar
Rauzy, G.. Nombres normaux et processus déterministes. Acta Arith. 29(3) (1976), 211225.CrossRefGoogle Scholar
Sharkovsky, A. N.. Attractors of Trajectories and their Basins. Ed. Verotskaya, V. V.. Naukova Dumka, Kiev, 2013 (in Russian).Google Scholar
Sun, T., Xi, H., Chen, Z. and Zhang, Y.. The attracting center and the topological entropy of a graph map. Adv. Math. (China) 33(5) (2004), 540546.Google Scholar
Sun, T., Xi, H. and Liang, H.. Special $\alpha$ -limit points and unilateral γ-limit points for graph maps. Sci. China Math. 54(9) (2011), 20132018.CrossRefGoogle Scholar