Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T04:02:51.607Z Has data issue: false hasContentIssue false

Multifractal analysis of the Lyapunov exponent for the backward continued fraction map

Published online by Cambridge University Press:  21 May 2009

GODOFREDO IOMMI*
Affiliation:
Facultad de Matemáticas, Pontificia Universidad Católica de Chile (PUC), Avenida Vicuña Mackenna 4860, Santiago, Chile (email: [email protected])

Abstract

In this paper we study the multifractal spectrum of Lyapunov exponents for interval maps with infinitely many branches and a parabolic fixed point. It turns out that, in strong contrast with the hyperbolic case, the domain of the spectrum is unbounded and points of non-differentiability might exist. Moreover, the spectrum is not concave. We establish conditions that ensure the existence of inflection points. To the best of our knowledge this is the first time that conditions of this type have been given. We also study the thermodynamic formalism for such maps. We prove that the pressure function is real analytic in a certain interval and then becomes equal to zero. We also discuss the existence and uniqueness of equilibrium measures. In order to do so, we introduce a family of countable Markov shifts that can be thought of as a generalization of the renewal shift.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adler, R. and Flatto, L.. The backward continued fraction map and geodesic flow. Ergod. Th. & Dynam. Sys. 4(4) (1984), 487492.CrossRefGoogle Scholar
[2]Baranski, K.. Multifractal analysis on the Sierpinski gasket. Ergod. Th. & Dynam. Sys. 25(3) (2005), 731757.CrossRefGoogle Scholar
[3]Barreira, L. and Iommi, G.. Multifractal analysis and phase transitions for hyperbolic and parabolic horseshoes. Preprint, 2006.Google Scholar
[4]Barreira, L. and Saussol, B.. Variational principles and mixed multifractal spectra. Trans. Amer. Math. Soc. 353 (2001), 39193944.CrossRefGoogle Scholar
[5]Barreira, L. and Schmeling, J.. Sets of non-typical points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116 (2000), 2970.CrossRefGoogle Scholar
[6]Bruin, H. and Todd, M.. Equilibrium states for interval map: the potential −tlog ∣Df∣. Preprint, 2008.Google Scholar
[7]Buzzi, J. and Sarig, O.. Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Th. & Dynam. Sys. 23(5) (2003), 13831400.CrossRefGoogle Scholar
[8]Gelfert, K. and Rams, M.. Geometry of limit sets for expansive Markov systems. Amer. Math. Soc. 361 (2009), 20012020.CrossRefGoogle Scholar
[9]Gelfert, K. and Rams, M.. The Lyapunov spectrum of some parabolic systems. Ergod. Th. & Dynam. Sys. to appear.Google Scholar
[10]Ghenciu, A.. Parabolic iterated function systems with applications to the backward continued fractions. Preprint, 2007, arXiv:0711.1336.Google Scholar
[11]Gröchenig, K. and Haas, A.. Backward continued fractions, Hecke groups and invariant measures for transformations of the interval. Ergod. Th. & Dynam. Sys. 16(6) (1996), 12411274.CrossRefGoogle Scholar
[12]Hardy, G. and Wright, E.. An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford, 1979.Google Scholar
[13]Iommi, G.. Multifractal analysis for countable Markov shifts. Ergod. Th. & Dynam. Sys. 25(6) (2005), 18811907.CrossRefGoogle Scholar
[14]Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for countable alphabet subshifts of finite type. Ergod. Th. & Dynam. Sys. 26(6) (2006), 17911803.CrossRefGoogle Scholar
[15]Kesseböhmer, M. and Stratmann, B.. A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates. J. Reine Angew. Math. (Crelles Journal) 605 (2007), 133163.Google Scholar
[16]Khinchin, A.. Continued Fractions. University of Chicago Press, Chicago, IL, 1964.Google Scholar
[17]Luzzatto, S.. Stochastic-like behaviour in non-uniformly expanding maps. Handbook of Dynamical Systems, Vol. 1B. Eds. B. Hasselblatt and A. Katok. Elsevier, Amsterdam, 2006, pp. 265326.CrossRefGoogle Scholar
[18]Manneville, P. and Pomeau, Y.. Intermittent transition to turbulence in dissipative dynamical systems. Comm. Math. Phys. 74(2) (1980), 189197.Google Scholar
[19]Mauldin, R. D. and Urbański, M.. Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. (3) 73(1) (1996), 105154.CrossRefGoogle Scholar
[20]Mayer, D. H.. On the thermodynamic formalism for the Gauss map. Comm. Math. Phys. 130(2) (1990), 311333.CrossRefGoogle Scholar
[21]Nakaishi, K.. Multifractal formalism for some parabolic maps. Ergod. Th. & Dynam. Sys. 20(3) (2000), 843857.CrossRefGoogle Scholar
[22]Pesin, Y.. Dimension Theory in Dynamical Systems. Cambridge University Press, Cambridge, 1997.CrossRefGoogle Scholar
[23]Pesin, Y. and Weiss, H.. A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions. J. Stat. Phys. 86(1–2) (1997), 233275.CrossRefGoogle Scholar
[24]Pesin, Y. and Zhang, K.. Phase transitions for uniformly expanding maps. J. Stat. Phys. 122(6) (2006), 10951110.CrossRefGoogle Scholar
[25]Pfister, C.-E. and Sullivan, W. G.. On the topological entropy of saturated sets. Ergod. Th. & Dynam. Sys. 27(3) (2007), 929956.CrossRefGoogle Scholar
[26]Pinner, C.. More on inhomogeneous Diophantine approximation. J. Théor. Nombres Bordeaux 13(2) (2001), 539557.CrossRefGoogle Scholar
[27]Pollicott, M. and Weiss, H.. Multifractal analysis of Lyapunov exponent for continued fraction and Manneville–Pomeau transformations and applications to Diophantine approximation. Comm. Math. Phys. 207(1) (1999), 145171.CrossRefGoogle Scholar
[28]Rényi, A.. On algorithms for the generation of real numbers. Magyar Tud. Akad. Mat. Fiz. Oszt. Kzl. 7 (1957), 265293.Google Scholar
[29]Ruelle, D.. Thermodynamic Formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn(Cambridge Mathematical Library). Cambridge Univeristy Press, Cambridge, 2004.CrossRefGoogle Scholar
[30]Sarig, O.. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19(6) (1999), 15651593.CrossRefGoogle Scholar
[31]Sarig, O.. Phase transitions for countable Markov shifts. Comm. Math. Phys. 217(3) (2001), 555577.CrossRefGoogle Scholar
[32]Sarig, O.. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131(6) (2003), 17511758.CrossRefGoogle Scholar
[33]Schmeling, J. and Weiss, H.. An overview of the dimension theory of dynamical systems. Smooth Ergodic Theory and its Applications (Seattle, WA, 1999) (Proceedings of Symposia in Pure Mathematics, 69). American Mathematical Society, Providence, RI, 2001, pp. 429488.CrossRefGoogle Scholar
[34]Stratmann, O. B. and Urbanski, M.. Real analyticity of topological pressure for parabolically semihyperbolic generalized polynomial-like maps. Indag. Math. (N.S.) 14(1) (2003), 119134.CrossRefGoogle Scholar
[35]Takens, F. and Verbitskiy, E.. On the variational principle for the topological entropy of certain non-compact sets. Ergod. Th. & Dynam. Sys. 23(1) (2003), 317348.CrossRefGoogle Scholar
[36]Testud, B.. Phase transitions for the multifractal analysis of self-similar measures. Nonlinearity 19(5) (2006), 12011217.CrossRefGoogle Scholar
[37]Weiss, H.. The Lyapunov spectrum for conformal expanding maps and axiom-A surface diffeomorphisms. J. Stat. Phys. 95 (1999), 34.CrossRefGoogle Scholar
[38]Wijsman, R. A.. Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70 (1964), 186188.CrossRefGoogle Scholar
[39]Wijsman, R. A.. Convergence of sequences of convex sets, cones and functions. II. Trans. Amer. Math. Soc. 123 (1966), 3245.CrossRefGoogle Scholar
[40]Zweimuller, R.. Invariant measures for general(ized) induced transformations. Proc. Amer. Math. Soc. 133(8) (2005), 22832295.CrossRefGoogle Scholar