Article contents
Minimally critical regular endomorphisms of
$\mathbb{A}^N$
Published online by Cambridge University Press: 21 October 2021
Abstract
We study the dynamics of the map
$f:\mathbb {A}^N\to \mathbb {A}^N$
defined by
$$ \begin{align*} f(\mathbf{X})=A\mathbf{X}^d+\mathbf{b}, \end{align*} $$
for
$A\in \operatorname {SL}_N$
,
$\mathbf {b}\in \mathbb {A}^N$
, and
$d\geq 2$
, a class which specializes to the unicritical polynomials when
$N=1$
. In the case
$k=\mathbb {C}$
we obtain lower bounds on the sum of Lyapunov exponents of f, and a statement which generalizes the compactness of the Mandelbrot set. Over
$\overline {\mathbb {Q}}$
we obtain estimates on the critical height of f, and over algebraically closed fields we obtain some rigidity results for post-critically finite morphisms of this form.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
REFERENCES
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline472.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline473.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline474.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline475.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline476.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline477.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline478.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230115072701290-0013:S0143385721001140:S0143385721001140_inline479.png?pub-status=live)
- 3
- Cited by