Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T22:24:29.575Z Has data issue: false hasContentIssue false

Minimality, transitivity, mixing and topological entropy on spaces with a free interval

Published online by Cambridge University Press:  21 August 2012

MATÚŠ DIRBÁK
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia (email: [email protected], [email protected], [email protected])
ĽUBOMÍR SNOHA
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia (email: [email protected], [email protected], [email protected])
VLADIMÍR ŠPITALSKÝ
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia (email: [email protected], [email protected], [email protected])

Abstract

We study dynamics of continuous maps on compact metrizable spaces containing a free interval (i.e. an open subset homeomorphic to an open interval). Special attention is paid to relationships between topological transitivity, weak and strong topological mixing, dense periodicity and topological entropy as well as to the topological structure of minimal sets. In particular, a trichotomy for minimal sets and a dichotomy for transitive maps are proved.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[ALM00]Alsedà, Ll., Llibre, J. and Misiurewicz, M.. Combinatorial Dynamics and Entropy in Dimension One (Advanced Series in Nonlinear Dynamics, 5), 2nd edn. World Scientific, River Edge, NJ, 2000.Google Scholar
[AKLS99]Alsedà, Ll., Kolyada, S., Llibre, J. and Snoha, Ľ.. Entropy and periodic points for transitive maps. Trans. Amer. Math. Soc. 351(4) (1999), 15511573.Google Scholar
[Ba01]Baldwin, S.. Entropy estimates for transitive maps on trees. Topology 40(3) (2001), 551569.Google Scholar
[Ba97]Banks, J.. Regular periodic decompositions for topologically transitive maps. Ergod. Th. & Dynam. Sys. 17(3) (1997), 505529.Google Scholar
[BC92]Block, L. S. and Coppel, W. A.. Dynamics in One Dimension (Lecture Notes in Mathematics, 1513). Springer, Berlin, 1992.Google Scholar
[BDHSS09]Balibrea, F., Downarowicz, T., Hric, R., Snoha, Ľ. and Špitalský, V.. Almost totally disconnected minimal systems. Ergod. Th. & Dynam. Sys. 29(3) (2009), 737766.Google Scholar
[BHS03]Balibrea, F., Hric, R. and Snoha, Ľ.. Minimal sets on graphs and dendrites. in Dynamical Systems and Functional Equations (Murcia, 2000), Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13(7) (2003), 17211725.Google Scholar
[Bl84]Blokh, A. M.. On transitive mappings of one-dimensional branched manifolds. Differential-Difference Equations and Problems of Mathematical Physics. Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984, pp. 39 (in Russian).Google Scholar
[Bl86]Blokh, A. M.. Dynamical systems on one-dimensional branched manifolds I. Teor. Funktsii Funktsional. Anal. i Prilozhen. 46 (1986), 818 (in Russian); translation in J. Soviet Math. 48(5) (1990), 500–508.Google Scholar
[CE80]Collet, P. and Eckmann, J. P.. Iterated Maps on the Interval as Dynamical Systems (Progress in Physics, 1). Birkhäuser, Boston, 1980.Google Scholar
[dMvS93]de Melo, W. and van Strien, S.. One-dimensional dynamics (Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), 25). Springer, Berlin, 1993.Google Scholar
[D32]Denjoy, A.. Sur les courbes definies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11 (1932), 333375.Google Scholar
[DY02]Downarowicz, T. and Ye, X.. When every point is either transitive or periodic. Colloq. Math. 93(1) (2002), 137150.Google Scholar
[HKO11]Harańczyk, G., Kwietniak, D. and Oprocha, P.. A note on transitivity, sensitivity and chaos for graph maps. J. Difference Appl. 17(10) (2011), 15491553.Google Scholar
[Il00]Illanes, A.. A characterization of dendrites with the periodic-recurrent property. Topology Proc. 23 (1998), 221235.Google Scholar
[Ka88]Kawamura, K.. A direct proof that each Peano continuum with a free arc admits no expansive homeomorphisms. Tsukuba J. Math. 12(2) (1988), 521524.Google Scholar
[Ki58]Kinoshita, S.. On orbits of homeomorphisms. Colloq. Math. 6 (1958), 4953.Google Scholar
[KS97]Kolyada, S. and Snoha, Ľ.. Some aspects of topological transitivity – a survey. Iteration Theory (ECIT 94) (Opava) (Grazer Mathematische Berichte, 334). Karl Franzens-Univ. Graz, Graz, 1997, pp. 335.Google Scholar
[KST01]Kolyada, S., Snoha, Ľ. and Trofimchuk, S.. Noninvertible minimal maps. Fund. Math. 168 (2001), 141163.Google Scholar
[Ku68]Kuratowski, K.. Topology. Vol. II. Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968.Google Scholar
[Kw11]Kwietniak, D.. Weak mixing implies mixing. Preprint, 2011.Google Scholar
[Ma11]Maličký, P.. Backward orbits of transitive maps. J. Difference Equ. Appl. 18(7) (2012), 11931203, doi:10.1080/10236198.2011.559166.CrossRefGoogle Scholar
[MS07]Mai, J. and Shi, E.. The nonexistence of expansive commutative group actions on Peano continua having free dendrites. Topology Appl. 155(1) (2007), 3338.CrossRefGoogle Scholar
[MS09]Mai, J.-H. and Shao, S.. $\overline R=R\cup \overline P$ for graph maps. J. Math. Anal. Appl. 350(1) (2009), 911.Google Scholar
[Na92]Nadler, S. B.. Continuum Theory: An Introduction (Monographs and Textbooks in Pure and Applied Mathematics, 158). Marcel Dekker, New York, 1992.Google Scholar
[Si92]Silverman, S.. On maps with dense orbits and the definition of chaos. Rocky Mountain J. Math. 22(1) (1992), 353375.Google Scholar
[SW09]Shi, E. and Wang, S.. The ping-pong game, geometric entropy and expansiveness for group actions on Peano continua having free dendrites. Fund. Math. 203(1) (2009), 2137.Google Scholar
[XYZH96]Xiong, J. C., Ye, X. D., Zhang, Z. Q. and Huang, J.. Some dynamical properties of continuous maps on the Warsaw circle. Acta Math. Sinica (Chin. Ser.) 39(3) (1996), 294299 (in Chinese).Google Scholar
[Ye92]Ye, X. D.. $D$-function of a minimal set and an extension of Sharkovskii’s theorem to minimal sets. Ergod. Th. & Dynam. Sys. 12(2) (1992), 365376.Google Scholar
[ZPQY08]Zhang, G, Pang, L, Qin, B and Yan, K. The mixing properties on maps of the Warsaw circle. J. Concr. Appl. Math. 6(2) (2008), 139144.Google Scholar