Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-22T21:01:14.606Z Has data issue: false hasContentIssue false

Minimal strong foliations in skew-products of iterated function systems

Published online by Cambridge University Press:  03 December 2024

PABLO G. BARRIENTOS*
Affiliation:
Instituto de Matemática e Estatística, UFF, Rua Mário Santos Braga s/n - Campus Valonguinhos, Niterói, Brazil (e-mail: [email protected])
JOEL ANGEL CISNEROS
Affiliation:
Instituto de Matemática e Estatística, UFF, Rua Mário Santos Braga s/n - Campus Valonguinhos, Niterói, Brazil (e-mail: [email protected])

Abstract

We study locally constant skew-product maps over full shifts of finite symbols with arbitrary compact metric spaces as fiber spaces. We introduce a new criterion to determine the density of leaves of the strong unstable (and strong stable) foliation, that is, for its minimality. When the fiber space is a circle, we show that both strong foliations are minimal for an open and dense set of robustly transitive skew-products. We provide examples where either one foliation is minimal or neither is minimal. Our approach involves investigating the dynamics of the associated iterated function system (IFS). We establish the asymptotic stability of the phase space of the IFS when it is a strict attractor of the system. We also show that any transitive IFS consisting of circle diffeomorphisms that preserve orientation can be approximated by a robust forward and backward minimal, expanding, and ergodic (with respect to Lebesgue) IFS. Lastly, we provide examples of smooth robustly transitive IFSs where either the forward or the backward minimal fails, or both.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bonatti, C., Crovisier, S., Gourmelon, N. and Potrie, R.. Tame dynamics and robust transitivity chain-recurrence classes versus homoclinic classes. Trans. Amer. Math. Soc. 366(9) (2014), 48494871.CrossRefGoogle Scholar
Bonatti, C. and Díaz, L. J.. Persistent nonhyperbolic transitive diffeomorphisms. Ann. of Math. (2) 143(2) (1996), 357396.CrossRefGoogle Scholar
Bonatti, C., Díaz, L. J. and Ures, R.. Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms. J. Inst. Math. Jussieu 1(4) (2002), 513541.CrossRefGoogle Scholar
Barrientos, P. G. and Fakhari, A.. Ergodicity of non-autonomous discrete systems with non-uniform expansion. Discrete Contin. Dyn. Syst. Ser. B 25(4) (2020), 13611382.Google Scholar
Barrientos, P. G., Fakhari, A., Malicet, D. and Sarizadeh, A.. Expanding actions: minimality and ergodicity. Stoch. Dyn. 17(04) (2017), 1750031.CrossRefGoogle Scholar
Barrientos, P. G., Fakhari, A. and Sarizadeh, A.. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete Contin. Dyn. Syst. Ser. A 34(9) (2014), 33413352.CrossRefGoogle Scholar
Barrientos, P. G., Ghane, F. H., Malicet, D. and Sarizadeh, A.. On the chaos game of iterated function systems. Topol. Methods Nonlinear Anal. 49(1) (2017), 105132.Google Scholar
Bleak, C., Harper, S. and Skipper, R.. Thompson’s group $T$ is $\frac{3}{2}$ -generated. Israel J. Math. (2023), accepted.Google Scholar
Barnsley, M. F. and Leśniak, K.. On the continuity of the Hutchinson operator. Symmetry 7(4) (2015), 18311840.CrossRefGoogle Scholar
Bamón, R., Moreira, C. G., Plaza, S. and Vera, J.. Differentiable structures of central cantor sets. Ergod. Th. & Dynam. Sys. 17(5) (1997), 10271042.CrossRefGoogle Scholar
Bowen, R.. A horseshoe with positive measure. Invent. Math. 29 (1975), 203204.CrossRefGoogle Scholar
Brown, K. S.. Finiteness properties of groups. J. Pure Appl. Algebra 44(1–3) (1987), 4575.CrossRefGoogle Scholar
Barnsley, M. F. and Vince, A.. Real projective iterated function systems. J. Geom. Anal. 22(4) (2012), 11371172.CrossRefGoogle Scholar
Cairns, G., Kolganova, A. and Nielsen, A.. Topological transitivity and mixing notions for group actions. Rocky Mountain J. Math. 37 (2007), 371397.CrossRefGoogle Scholar
Ciesielski, K. C. and Seoane-Sepúlveda, J. B.. Simultaneous small coverings by smooth functions under the covering property axiom. Real Anal. Exchange 43(2) (2018), 359386.CrossRefGoogle Scholar
Ciesielski, K. and Seoane-Sepúlveda, J.. Differentiability versus continuity: restriction and extension theorems and monstrous examples. Bull. Amer. Math. Soc. (N.S.) 56(2) (2019), 211260.CrossRefGoogle Scholar
Durand-Cartagena, E. and Jaramillo, J.. Pointwise Lipschitz functions on metric spaces. J. Math. Anal. Appl. 363(2) (2010), 525548.CrossRefGoogle Scholar
Deroin, B.. Locally discrete expanding groups of analytic diffeomorphisms of the circle. J. Topol. 13(3) (2020), 12161229.CrossRefGoogle Scholar
Deroin, B., Kleptsyn, V. A. and Navas, A.. On the question of ergodicity for minimal group actions on the circle. Mosc. Math. J. 9(2) (2009), 263303.CrossRefGoogle Scholar
Deroin, B., Kleptsyn, V. and Navas, A.. On the ergodic theory of free group actions by real-analytic circle diffeomorphisms. Invent. Math. 212 (2018), 731779.CrossRefGoogle Scholar
Duff, D. M.. ${C}^1$ -minimal subsets of the circle. Ann. Inst. Fourier (Grenoble) 31 (1981), 177193.CrossRefGoogle Scholar
Ghys, É.. Groups acting on the circle. Enseign. Math. 47(3/4) (2001), 329408.Google Scholar
Gorodetski, A. S. and Ilyashenko, Y. S.. Certain new robust properties of invariant sets and attractors of dynamical systems. Funct. Anal. Appl. 33(2) (1999), 95105.CrossRefGoogle Scholar
Gorodetski, A. and Ilyashenko, Y. S.. Certain properties of skew products over a horseshoe and a solenoid. Proc. Steklov Inst. Math. 231 (2000), 90112.Google Scholar
Ghys, É. and Sergiescu, V.. Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math. Helv. 62 (1987), 185239.CrossRefGoogle Scholar
Homburg, A. J. and Nassiri, M.. Robust minimality of iterated function systems with two generators. Ergod. Th. & Dynam. Sys. 34(6) (2013), 19141929.CrossRefGoogle Scholar
Hirsch, M., Pugh, C. and Shub, M.. Invariant Manifolds (Lecture Notes in Mathematics, 583). Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
Hutchinson, J. E.. Fractals and self similarity. Indiana Univ. Math. J. 30(5) (1981), 713747.CrossRefGoogle Scholar
Kleptsyn, V., Kudryashov, Y. and Okunev, A.. Classification of generic semigroup actions of circle diffeomorphisms. Preprint, 2018, arXiv:1804.00951.Google Scholar
Kleptsyn, V. A. and Nalskii, M.. Contraction of orbits in random dynamical systems on the circle. Funct. Anal. Appl. 38(4) (2004), 267282.CrossRefGoogle Scholar
Koropecki, A. and Nassiri, M.. Transitivity of generic semigroups of area-preserving surface diffeomorphisms. Math. Z. 3(266) (2010), 707718.CrossRefGoogle Scholar
Leśniak, K., Snigireva, N., Strobin, F. and Vince, A.. Transition phenomena for the attractor of an iterated function system. Nonlinearity 35(10) (2022), 5396.CrossRefGoogle Scholar
Mañé, R.. Contributions to the stability conjecture. Topology 17(4) (1978), 383396.CrossRefGoogle Scholar
Moise, E. E.. Homeomorphisms between Cantor sets. Geometric Topology in Dimensions 2 and 3. Ed. Halmos, P. R.. Springer New York, New York, 1977, pp. 8390.CrossRefGoogle Scholar
Navas, A.. Groups of Circle Diffeomorphisms. University of Chicago Press, Chicago, IL, 2011.CrossRefGoogle Scholar
Nobili, F.. Minimality of invariant laminations for partially hyperbolic attractors. Nonlinearity 28(6) (2015), 1897.CrossRefGoogle Scholar
Nassiri, M. and Pujals, E. R.. Robust transitivity in Hamiltonian dynamics. Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 191239.CrossRefGoogle Scholar
Piñeyrúa, L. P.. Some hyperbolicity revisited and robust transitivity. Preprint, 2023, arXiv:2302.01914.Google Scholar
Pujals, E. R. and Sambarino, M.. A sufficient condition for robustly minimal foliations. Ergod. Th. & Dynam. Sys. 26(1) (2006), 281289.CrossRefGoogle Scholar
Rodriguez Hertz, F., Rodriguez Hertz, M. A. and Ures, R.. Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms. Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow (Fields Institute Communications, 51). Ed. G. Forni, M. Lyubich, C. Pugh and M. Shub. American Mathematical Society, Providence, RI, 2007, pp. 103109.Google Scholar
Rodriguez Hertz, J., Ures, R. and Yang, J.. Robust minimality of strong foliations for DA diffeomorphisms: $cu$ -volume expansion and new examples. Trans. Amer. Math. Soc. 375(6) (2022), 43334367.CrossRefGoogle Scholar
Rypka, M.. Stability of multivalued attractor. Topol. Methods Nonlinear Anal. 53(1) (2019), 97109.Google Scholar
Sarizadeh, A.. Attractor for minimal iterated function systems. Collect. Math. doi:10.1007/s13348-023-00422-8. Published online 24 October 2023.CrossRefGoogle Scholar
Shub, M.. Topological Transitive Diffeomorphisms in ${T}^4$ (Lecture Notes in Mathematics, 206). Springer, Berlin, 1971.CrossRefGoogle Scholar
Srivastava, S. M.. A Course on Borel Sets (Graduate Texts in Mathematics, 180). Springer Science & Business Media, New York, 2008.Google Scholar
Shub, M. and Sullivan, D.. Expanding endomorphisms of the circle revisited. Ergod. Th. & Dynam. Sys. 5(2) (1985), 285289.CrossRefGoogle Scholar