Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T12:05:36.596Z Has data issue: false hasContentIssue false

Minimal actions of semisimple groups

Published online by Cambridge University Press:  19 September 2008

Garrett Stuck
Affiliation:
Department of Mathematics, University of Maryland, College Park, MD 20742, USA

Abstract

We show that a C0 minimal action of a semisimple Lie group without compact factors is either locally free or induced from a minimal action of a proper parabolic subgroup. We describe the orbit structure of the action restricted to a maximal compact subgroup, and then apply this to minimal actions in low dimension. We give some examples, applications, and open problems.

Type
Survey Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adams, S. and Stuck, G.. Splitting of non-negatively curved leaves in minimal sets of foliations. Duke Math. J. 71 (1993), 7192.CrossRefGoogle Scholar
[2]Borel, A.. Les bouts des espaces homogènes de groupes de Lie. Ann. Math. (2) 58 (1953), 443457.CrossRefGoogle Scholar
[3]Borel, A. and Serre, J. P.. Théorème de finitude en cohomologie galoisienne. Comment. Math. Helv. 39 (1964), 111164.CrossRefGoogle Scholar
[4]Bredon, G. E.. Introduction to compact transformation groups. Pure and Applied Mathematics, Vol. 46. Academic Press, 1972.Google Scholar
[5]Dani, S. G.. Continuous equivariant images of lattice-actions on boundaries. Ann. Math. (2) 119 (1984), 111119.CrossRefGoogle Scholar
[6]Dani, S. G. and Raghavan, S.. Orbits of euclidean frames under discrete linear groups. Israel J. Math. 36 (1980), 300320.CrossRefGoogle Scholar
[7]Fathi, A. and Herman, M. R.. Existence de difféomorphismes minimaux. Asterisque 49 (1977), 3759.Google Scholar
[8]Gottschalk, W. and Hedlund, G.. Topological dynamics (AMS Colloquim Publications, XXXVI). AMS, Providence, 1955.Google Scholar
[9]Gromov, M.. Rigid transformation groups. Geometrie Differentielle. Eds Bernard, D. and Choquet-Bruhat, Y.. Hermann, Paris, 1988.Google Scholar
[10]Kneser, H.. Regulare kurvensharen auf ringflächen. Math. Ann. 91 (1924), 135154.CrossRefGoogle Scholar
[11]Raghunathan, M. S.. Discrete subgroups of Lie groups. Springer, New York, 1972.CrossRefGoogle Scholar
[12]Stuck, G.. Low dimensional actions of semisimple groups. Israel J. Math. 76 (1991), 2771.CrossRefGoogle Scholar
[13]Stuck, G. and Zimmer, R. J.. Stabilizers for ergodic actions of higher rank semisimple groups. Ann. Math. (2) 139 (1994), 723747.CrossRefGoogle Scholar
[14]Witte, D.. Arithmetic groups of higher Q-rank cannot act on l-manifolds. Proc. AMS. 122 (1994), 333340.Google Scholar
[15]Witte, D.. Cocompact subgroups of semisimple Lie groups. Proc. Conf. Lie Alg. (Madison, WI, 1987). Eds Benkart, G. M. and Osborn, J. M.. Springer, New York, 1988.Google Scholar
[16]Zimmer, R. J.. Ergodic theory, semisimple Lie groups, and foliations by manifolds of negative curvature. Inst. Hautes Etudes Sci. Publ. Math. 55 (1982), 3762.CrossRefGoogle Scholar
[17]Zimmer, R. J.. Semisimple automorphism groups of G-structures. J. Diff. Geom. 19 (1984), 117123.Google Scholar
[18]Margulis, G. A.. Quotient groups of discrete groups and measure theory. Funct. Anal. Appl. 12 (1978), 295305.CrossRefGoogle Scholar