Article contents
Manhattan curves for hyperbolic surfaces with cusps
Published online by Cambridge University Press: 04 December 2018
Abstract
In this paper, we study an interesting curve, the so-called Manhattan curve, associated with a pair of boundary-preserving Fuchsian representations of a (non-compact) surface; in particular, representations corresponding to Riemann surfaces with cusps. Using thermodynamic formalism (for countable state Markov shifts), we prove the analyticity of the Manhattan curve. Moreover, we derive several dynamical and geometric rigidity results, which generalize results of Burger [Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2. Int. Math. Res. Not.1993(7) (1993), 217–225] and Sharp [The Manhattan curve and the correlation of length spectra on hyperbolic surfaces. Math. Z.228(4) (1998), 745–750] for convex cocompact Fuchsian representations.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press, 2018
References
- 3
- Cited by