Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T18:59:14.880Z Has data issue: false hasContentIssue false

Lowering topological entropy over subsets

Published online by Cambridge University Press:  21 July 2009

WEN HUANG
Affiliation:
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China (email: [email protected], [email protected])
XIANGDONG YE
Affiliation:
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China (email: [email protected], [email protected])
GUOHUA ZHANG
Affiliation:
School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China (email: [email protected])

Abstract

Let (X,T) be a topological dynamical system (TDS), and h(T,K) the topological entropy of a subset K of X. (X,T) is lowerable if for each 0≤hh(T,X) there is a non-empty compact subset with entropy h; it is hereditarily lowerable if each non-empty compact subset is lowerable; it is hereditarily uniformly lowerable if for each non-empty compact subset K and each 0≤hh(T,K) there is a non-empty compact subset KhK with h(T,Kh)=h and Kh has at most one limit point. It is shown that each TDS with finite entropy is lowerable, and that a TDS (X,T) is hereditarily uniformly lowerable if and only if it is asymptotically h-expansive.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bogenschütz, T.. Entropy pressure, and a variational principle for random dynamical systems. Random and Computational Dynamics 1 (1992/1993), 99116.Google Scholar
[2]Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.CrossRefGoogle Scholar
[3]Bowen, R.. Entropy-expansive maps. Trans. Amer. Math. Soc. 164 (1972), 323331.CrossRefGoogle Scholar
[4]Bowen, R.. Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184 (1973), 125136.CrossRefGoogle Scholar
[5]Boyle, M. and Downarowicz, T.. The entropy theory of symbolic extensions. Invent. Math. 156 (2004), 119161.CrossRefGoogle Scholar
[6]Boyle, M., Fiebig, D. and Fiebig, U.. Residual entropy, conditional entropy and subshift covers. Forum Math. 14 (2002), 713757.CrossRefGoogle Scholar
[7]Buzzi, J.. Intrinsic ergodicity of smooth interval maps. Israel J. Math. 100 (1997), 125161.CrossRefGoogle Scholar
[8]Downarowicz, T.. Entropy of a symbolic extension of a dynamical system. Ergod. Th. & Dynam. Sys. 21 (2001), 10511070.CrossRefGoogle Scholar
[9]Downarowicz, T.. Entropy structure. J. Anal. Math. 96 (2005), 57116.CrossRefGoogle Scholar
[10]Downarowicz, T. and Serafin, J.. Fiber entropy and conditional variational principles in compact non-metrizable spaces. Fund. Math. 172 (2002), 217247.CrossRefGoogle Scholar
[11]Falconer, K. J.. Fractal Geometry—Mathematical Foundations and Applications. John Wiley & Sons, Chichester, 1990.CrossRefGoogle Scholar
[12]Feng, D.. Private communication.Google Scholar
[13]Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, NJ, 1981.CrossRefGoogle Scholar
[14]Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
[15]Huang, W., Ye, X. and Zhang, G. H.. A local variational principle for conditional entropy. Ergod. Th. & Dynam. Sys. 26 (2006), 219245.CrossRefGoogle Scholar
[16]Katok, A.. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137173.CrossRefGoogle Scholar
[17]Kifer, Y.. Ergodic Theory of Random Transformations (Progress in Probability and Statistics, 10). Birkhäuser Boston, Cambridge, MA, 1986.CrossRefGoogle Scholar
[18]Ledrappier, F.. A Variational Principle for the Topological Conditional Entropy (Lecture Notes in Mathematics, 729). Springer, Berlin, 1979, pp. 7888.Google Scholar
[19]Ledrappier, F. and Walters, P.. A relativised variational principle for continuous transformations. J. London Math. Soc. 16(2) (1977), 568576.CrossRefGoogle Scholar
[20]Lindenstrauss, E.. Lowering topological entropy. J. Anal. Math. 67 (1995), 231267.CrossRefGoogle Scholar
[21]Lindenstrauss, E.. Mean dimension, small entropy factors and an embedding theorem. Publ. Math. Inst. Hautes Études Sci. 89 (1999), 227262.CrossRefGoogle Scholar
[22]Lindenstrauss, E. and Weiss, B.. Mean topological dimension. Israel J. Math. 115 (2000), 124.CrossRefGoogle Scholar
[23]Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability (Cambridge Studies in Advanced Mathematics, 44). Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[24]Misiurewicz, M.. Diffeomorphism without any measure with maximal entropy. Bull. Acad. Pol. Sci. 21 (1973), 903910.Google Scholar
[25]Misiurewicz, M.. Topological conditional entropy. Studia Math. 55 (1976), 175200.CrossRefGoogle Scholar
[26]Pesin, Y.. Dimension Theory in Dynamical Systems. Contemporary Views and Applications (Chicago Lectures in Mathematics). The University of Chicago Press, Chicago, IL, 1998.Google Scholar
[27]Richeson, D. and Wiseman, J.. Positively expansive dynamical systems. Topology Appl. 154 (2007), 604613.CrossRefGoogle Scholar
[28]Shub, M. and Weiss, B.. Can one always lower topological entropy? Ergod. Th. & Dynam. Sys. 11 (1991), 535546.CrossRefGoogle Scholar
[29]Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, NY, 1982.CrossRefGoogle Scholar
[30]Ye, X. and Zhang, G. H.. Entropy points and applications. Trans. Amer. Math. Soc. 359 (2007), 61676186.CrossRefGoogle Scholar