Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T12:28:29.159Z Has data issue: false hasContentIssue false

Lexicographic semigroupoids

Published online by Cambridge University Press:  19 September 2008

S. C. Power
Affiliation:
Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, England

Abstract

The natural lexicographic semigroupoids associated with Cantor product spaces indexed by countable linear orders are classified. Applications are given to the classification of triangular operator algebras which are direct limits of upper-triangular matrix algebras.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Arveson, W. B.. Analyticity in operator algebras. Amer. J. Math. 89 (1967), 578642.Google Scholar
[2]Donsig, A. P.. Semisimple triangular AF algebras. J. Functional Anal. 111 (1993), 323349.CrossRefGoogle Scholar
[3]Donsig, A. P. and Hopenwasser, A.. Order preservation in limit algebras. J. Functional Anal. 133 (1995), 342394.Google Scholar
[4]Hopenwasser, A. and Power, S. C.. Classification of limits of triangular matrix algebras. Proc. Edinburgh Math. Soc. 36 (1992), 107121.CrossRefGoogle Scholar
[5]Muhly, P. S. and Solel, b.. Subalgebras of groupoid C*-algebras. J. für die Reine und Ange. Math. 402 (1989), 4175.Google Scholar
[6]Poon, Y. T.. A complete isomorphism invariant for a class of triangular UHF algebras. J. Operator Th. 27 (1992), 221230.Google Scholar
[7]Power, S. C.. Limit algebras: an introduction to subalgebras of C*-algebras. Pitman Research Notes in Mathematics vol 278. Longman Scientific and Technical, London-New York, 1992.Google Scholar
[8]Power, S. C.. On the outer automorphism groups of triangular alternation limit algebras. J. Functional Anal. 113 (1993), 462471.Google Scholar
[9]Power, S. C.. Infinite lexicographic products of triangular algebras. Bull. London Math. Soc. 27 (1995), 273277.CrossRefGoogle Scholar
[10]Renault, J.. A groupoid approach to C*-algebras. Lecture Notes in Math. 793. Springer, Berlin-Heidelberg-New York, 1980.Google Scholar