Article contents
Large deviations and central limit theorems for sequential and random systems of intermittent maps
Published online by Cambridge University Press: 07 October 2020
Abstract
We obtain large and moderate deviation estimates for both sequential and random compositions of intermittent maps. We also address the question of whether or not centering is necessary for the quenched central limit theorems obtained by Nicol, Török and Vaienti [Central limit theorems for sequential and random intermittent dynamical systems. Ergod. Th. & Dynam. Sys.38(3) (2018), 1127–1153] for random dynamical systems comprising intermittent maps. Using recent work of Abdelkader and Aimino [On the quenched central limit theorem for random dynamical systems. J. Phys. A 49(24) (2016), 244002] and Hella and Stenlund [Quenched normal approximation for random sequences of transformations. J. Stat. Phys.178(1) (2020), 1–37] we extend the results of Nicol, Török and Vaienti on quenched central limit theorems for centered observables over random compositions of intermittent maps: first by enlarging the parameter range over which the quenched central limit theorem holds; and second by showing that the variance in the quenched central limit theorem is almost surely constant (and the same as the variance of the annealed central limit theorem) and that centering is needed to obtain this quenched central limit theorem.
Keywords
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
References
- 7
- Cited by