Article contents
Lagrangian systems on hyperbolic manifolds
Published online by Cambridge University Press: 01 October 1999
Abstract
This paper gives two results that show that the dynamics of a time-periodic Lagrangian system on a hyperbolic manifold are at least as complicated as the geodesic flow of a hyperbolic metric. Given a hyperbolic geodesic in the Poincaré ball, Theorem A asserts that there are minimizers of the lift of the Lagrangian system that are a bounded distance away and have a variety of approximate speeds. Theorem B gives the existence of a collection of compact invariant sets of the Euler–Lagrange flow that are semiconjugate to the geodesic flow of a hyperbolic metric. These results can be viewed as a generalization of the Aubry–Mather theory of twist maps and the Hedlund–Morse–Gromov theory of minimal geodesics on closed surfaces and hyperbolic manifolds.
- Type
- Research Article
- Information
- Copyright
- 1999 Cambridge University Press
- 7
- Cited by