Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T02:49:49.215Z Has data issue: false hasContentIssue false

La distance de réarrangement, duale de la fonctionnelle de Bowen

Published online by Cambridge University Press:  05 April 2011

THIERRY BOUSCH*
Affiliation:
Laboratoire de Mathématique (UMR 8628 CNRS), bât. 425/430, Université Paris-Sud, 91405 Orsay Cedex, France (email: [email protected])

Abstract

On the space of signed invariant measures of A, one constructs a norm (and hence a distance) that seems to have a particular significance in dynamics. I shall present some of its properties, in particular a duality theorem à la Kantorovich–Rubinshtein, which gives an expression of this distance using couplings.

Résumé

Sur l’espace des mesures invariantes signées de A, on construit une norme (et donc une distance) qui semble avoir une importance particulière du point de vue dynamique. Je présenterai quelques-unes de ses propriétés, et tout particulièrement un théorème de dualité à la Kantorovitch–Rubinshtein, qui permet d’exprimer cette distance en termes de couplages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Bou]Bousch, T.. La condition de Walters. Ann. Sci. École Norm. Sup. 34 (2001), 287311.CrossRefGoogle Scholar
[BM]Bousch, T. and Mairesse, J.. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. Amer. Math. Soc. 15 (2002), 77111.CrossRefGoogle Scholar
[Bow]Bowen, R.. Some systems with unique equilibrium states. Math. Sys. Theory 8 (1974), 193202.CrossRefGoogle Scholar
[Do1]Dobrushin, R. L.. Description of a random field by means of conditional probabilities and conditions for its regularity. Teor. Veroyatn. Primen. 13 (1968), 201229; traduction anglaise dans Theory Probab. Appl. 13 (1968), 197–224.Google Scholar
[Do2]Dobrushin, R. L.. Definition of a system of random variables by means of conditional distributions. Teor. Veroyatn. Primen. 15 (1970), 469497; traduction anglaise dans Theory Probab. Appl. 15 (1970), 458–486.Google Scholar
[Dud]Dudley, R. M.. Probabilities and Metrics. Convergence of Laws on Metric Spaces, with a View to Statistical Testing (Lecture Notes Series, 45). Matematisk Institut, Aarhus Universitet, 1976.Google Scholar
[F+]Fertin, G., Labarre, A., Rusu, I., Tannier, E. and Vialette, S.. Combinatorics of Genome Rearrangements. MIT Press, Cambridge, MA, 2009.CrossRefGoogle Scholar
[Fol]Föllmer, H.. A covariance estimate for Gibbs measures. J. Funct. Anal. 46 (1982), 387395.CrossRefGoogle Scholar
[Geo]Georgii, H.-O.. Gibbs Measures and Phase Transitions (de Gruyter Studies in Mathematics, 9). Walter de Gruyter, Berlin, 1988.CrossRefGoogle Scholar
[GNS]Gray, R. M., Neuhoff, D. L. and Shields, P. C.. A generalization of Ornstein’s distance with applications to information theory. Ann. Probab. 3 (1975), 315328.CrossRefGoogle Scholar
[HR]Haydn, N. T. A. and Ruelle, D.. Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification. Comm. Math. Phys. 148 (1992), 155167.CrossRefGoogle Scholar
[KR1]Kantorovich, L. V. and Rubinshtein, G. S.. On a functional space and certain extremum problems. Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 10581061.Google Scholar
[KR2]Kantorovich, L. V. and Rubinshtein, G. S.. On a space of totally additive functions. Vest. Leningrad Univ. 13 (1958), 5259.Google Scholar
[Kun]Künsch, H.. Decay of correlations under Dobrushin’s uniqueness condition and its applications. Comm. Math. Phys. 84 (1982), 207222.CrossRefGoogle Scholar
[Lan]Lanford, O. E.. Entropy and equilibrium states in classical statistical mechanics. Statistical Mechanics and Mathematical Problems, Battelle Seattle 1971 Rencontres (Lecture Notes in Physics, 20). Ed. Lenard, A.. Springer, Berlin, 1973, pp. 1113.Google Scholar
[Orn]Ornstein, D. S.. Ergodic Theory, Randomness, and Dynamical Systems (Yale Mathematical Monographs, 5). Yale University Press, New Haven, CT, 1974.Google Scholar
[Rue]Ruelle, D.. Thermodynamic formalism for maps satisfying positive expansiveness and specification. Nonlinearity 5 (1992), 12231236.CrossRefGoogle Scholar
[Rus]Rüschendorf, L.. Wasserstein-metric (1998) (Encyclopaedia of Mathematics, Supplement I, II, III). Ed. Hazewinkel, M.. Kluwer Academic, Dordrecht, 1997–2001. Disponible sur le Web, en: http://www.stochastik.uni-freiburg.de/∼rueschendorf/papers/wasserstein.pdf.Google Scholar
[Shi]Shields, P. C.. The interactions between ergodic theory and information theory. IEEE Trans. Inform. Theory 44 (1998), 20792093.CrossRefGoogle Scholar
[Ver]Vershik, A.. The Kantorovich metric: the initial history and little-known applications. J. Math. Sci. 133 (2006), 14101417.CrossRefGoogle Scholar
[Wa1]Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 127153.CrossRefGoogle Scholar
[Wa2]Walters, P.. Convergence of the Ruelle operator for a function satisfying Bowen’s condition. Trans. Amer. Math. Soc. 353 (2001), 327347.CrossRefGoogle Scholar
[Wa3]Walters, P.. Regularity conditions and Bernoulli properties of equilibrium states and g-measures. J. Lond. Math. Soc. (2) 71 (2005), 379396.CrossRefGoogle Scholar
[Wa4]Walters, P.. A natural space of functions for the Ruelle operator theorem. Ergod. Th. & Dynam. Sys. 27 (2007), 13231348.CrossRefGoogle Scholar