Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T12:49:38.184Z Has data issue: false hasContentIssue false

Invariant curves around a parabolic fixed point at infinity

Published online by Cambridge University Press:  19 September 2008

Dov Aharonov
Affiliation:
Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel
Uri Elias
Affiliation:
Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stability of a fixed point of an area-preserving transformation in the plane is characterized by the invariant curves which surround it. The existence of invariant curves had been extensively studied for elliptic fixed points. Here we study the similar problem for parabolic fixed points. In particular we are interested in the case where the fixed point is at infinity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

REFERENCES

[1]Brown, M.. Problem 6439. Amer. Math. Monthly 90 (1983), 569; 92 (1985), 218.CrossRefGoogle Scholar
[2]Devaney, R. L.. A piecewise linear model for the zones of instability of an area-preserving mapping. Physica 10D (1984), 387393.Google Scholar
[3]Froeschle, C.. Etude numérique de transformations ponctuelles planes conservant les aires. C.R. Acad. Sci. Paris 266 (1968), 747749.Google Scholar
[4]Hénon, M.. Numerical study of quadratic area-preserving mappings. Quarterly J. Applied Math. 27 (1969), 291312.CrossRefGoogle Scholar
[5]Herman, M. R.. Sur les courbes invariantes par les diffeomorphismes de l'anneau. I: Astérisque 103104 (1983),Google Scholar
Sur les courbes invariantes par les diffeomorphismes de l'anneau. II: Astérisque 144 (1986).Google Scholar
[6]Moser, J.. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss., Gottingen II, Math. Phys. K1. (1962), 120.Google Scholar
[7]Moser, J.. Stability and nonlinear character of ordinary differential equations. In Langer, R. ed., Nonlinear Problems, The University of Wisconsin Press, 1963.Google Scholar
[8]Reich, S.. Problem 5721. Amer. Math. Monthly 77 (1970), 313; 78 (1971), 310.Google Scholar
[9]Russmann, H.. Uber invariante Kurven differenzierbarer Abbildungen einen Kreisringes. Nachr. Akad. Wiss., Gottingen II, Math. Phys. K1. (1970), 67105.Google Scholar
[10]Siegel, C. L. & Moser, J.. Lectures on Celestial Mechanics. Springer Verlag, Berlin, 1971.CrossRefGoogle Scholar
[11]Simo, C.. Stability of degenerate fixed points of analytic area preserving mappings. Astérisque 98–99 (1982), 184194.Google Scholar