Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T04:54:53.427Z Has data issue: false hasContentIssue false

Handel’s fixed point theorem revisited

Published online by Cambridge University Press:  06 August 2012

JULIANA XAVIER*
Affiliation:
I.M.E.R.L, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay (email: [email protected])

Abstract

Michael Handel proved in [A fixed-point theorem for planar homeomorphisms. Topology38 (1999), 235–264] the existence of a fixed point for an orientation-preserving homeomorphism of the open unit disk that can be extended to the closed disk, provided that it has points whose orbits form an oriented cycle of links at infinity. Later, Patrice Le Calvez gave a different proof of this theorem based only on Brouwer theory and plane topology arguments in [Une nouvelle preuve du théorème de point fixe de Handel. Geom. Topol.10(2006), 2299–2349]. These methods improved the result by proving the existence of a simple closed curve of index 1. We give a new, simpler proof of this improved version of the theorem and generalize it to non-oriented cycles of links at infinity.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Brouwer, L. E. J.. Beweis des ebenen Translationssatzes. Math. Ann. 72 (1912), 3754.Google Scholar
[2]Brown, M.. A new proof of Brouwer’s lemma on translation arcs. Houston J. Math. 10 (1984), 3541.Google Scholar
[3]Brown, M. and Kister, J.. Invariance of complementary domains of a fixed point set. Proc. Am. Math. Soc. 91 (1984), 503504.Google Scholar
[4]Fathi, A.. An orbit closing proof of Brouwer’s lemma on translation arcs. Enseign. Math. 2(33) (1987), 315322.Google Scholar
[5]Franks, J.. Generalizations of the Poincaré–Birkhoff theorem. Ann. of Math. (2) 128 (1998), 139151.Google Scholar
[6]Guillou, L.. Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff. Topology 33 (1994), 331351.Google Scholar
[7]Handel, M.. A fixed-point theorem for planar homeomorphisms. Topology 38 (1999), 235264.Google Scholar
[8]Le Calvez, P.. Periodic orbits of Hamiltonian homeomorphisms of surfaces. Duke Math. J. 133(1) (2006), 125184.Google Scholar
[9]Le Calvez, P.. Une nouvelle preuve du théorème de point fixe de Handel. Geom. Topol. 10 (2006), 22992349.CrossRefGoogle Scholar
[10]Le Roux, F.. Homéomorphismes de surfaces: théorèmes de la fleur de Leau-Fatou et de la variété stable. Astérisque 292 (2004).Google Scholar
[11]Sauzet, A.. Application des décompositions libres à l’étude des homéomorphismes de surface. Thèse, l’Université Paris 13, 2001.Google Scholar